List of Publications

In Refereed Journals

- Astrophysical Fluid Dynamics and Accretion Phenomena
- 1. Bagchi, M., et al., along with Mukherjee, A., **Mukhopadhyay**, **B.** (in alphabatic order) and 24 others, Astrophysics with Compact Objects: An Indian Perspective, Present Status and Future Vision Journal of Astrophysics and Astronomy **46**, 62, 2025; arXiv:2505.18238.
- 2. Pathak, M., and Mukhopadhyay, B., Simulating ULXs and blazars as GRMHD accretion flows around a black hole Astrophysical Journal 981, 162, 2025; arXiv:2502.03538.
- 3. Das, A. R., and **Mukhopadhyay**, **B.**, QPOs in compact sources as a non-linear hydrodynamical resonance: Determining spin of compact objects Astrophysical Journal **955**, 86, 2023; arXiv:2308.09759.
- 4. Raha, R., Mukhopadhyay, B., Chatterjee, K., and Gopika, S. M., Magnetized Advective Accretion Disks and Jets: Harmpi Simulation Astronomy Reports 67 (Suppl 2), S189, 2023.
- Ghosh, S., and Mukhopadhyay, B., The competition between the hydrodynamic instability from noise and magnetorotational instability in the Keplerian disks - AIP Advances 12, 055228, 2022; arXiv:2205.13230.
- 6. Datta, S. R., Mondal, T., and **Mukhopadhyay, B.**, Angular momentum transport and thermal stabilization of optically thin, advective accretion flows through large-scale magnetic fields MNRAS **513**, 204, 2022; arXiv:2203.11965.
- Ghosh, S., and Mukhopadhyay, B., Forced linear shear flows with rotation: rotating Couette-Poiseuille flow, its stability and astrophysical implications Astrophysical Journal 922, 161, 2021; arXiv:2107.04012.
- 8. Ghosh, S., and **Mukhopadhyay**, **B.**, Origin of hydrodynamic instability from noise: from laboratory flow to accretion disk Physical Review Fluids **6**, 013903, 2021; arXiv:2012.13417.
- 9. Ghosh, S., and **Mukhopadhyay**, **B.**, Hydrodynamical instability with noise in the Keplerian accretion discs: Modified Landau equation Monthly Notices of Royal Astronomical Society **496**, 4191, 2020; arXiv:2006.10075.
- 10. Mondal, T., and **Mukhopadhyay, B.**, Role of magnetically dominated disc-outflow symbiosis on bright hard-state black hole sources: ultra-luminous X-ray sources to quasars Monthly Notices of Royal Astronomical Society **495**, 350, 2020; arXiv:1910.08564.
- 11. Mondal, T., and **Mukhopadhyay, B.**, FSRQ/BL Lac dichotomy as the magnetized advective accretion process around black holes: a unified classification of blazars Monthly Notices of Royal Astronomical Society **486**, 3465, 2019; arXiv:1904.05898.
- Mondal, T., and Mukhopadhyay, B., Ultra-luminous X-ray sources as magnetically powered sub-Eddington advective accretion flows around stellar mass black holes - Monthly Notices of Royal Astronomical Society Letters 482, L24, 2019; arXiv:1808.10461.

- Dhang, P., Sharma, P., and Mukhopadhyay, B., Magnetized SASI: its mechanism and possible connection to some QPOs in XRBs - Monthly Notices of Royal Astronomical Society 476, 3310, 2018; arXiv:1712.02367.
- 14. Mondal, T., and **Mukhopadhyay, B.**, Magnetized advective accretion flows: formation of magnetic barriers in Magnetically Arrested Discs Monthly Notices of Royal Astronomical Society **476**, 2396, 2018; arXiv:1802.01594.
- Nath, S. K., and Mukhopadhyay, B., A pure hydrodynamic instability in shear flows and its application to astrophysical accretion disks - Astrophysical Journal 830, 86, 2016; arXiv:1608.00980.
- Singh Bhatia, T., and Mukhopadhyay, B., Exploring nonnormality in magnetohydrodynamic rotating shear flows: application to astrophysical accretion disks - Physical Review Fluids 1, 063101, 2016; arXiv:1609.01841.
- Dhang, P., Sharma, P., and Mukhopadhyay, B., Spherical accretion: the influence of inner boundary and quasi-periodic oscillations - Monthly Notices of Royal Astronomical Society 461, 2426, 2016; arXiv:1604.08214.
- Bhattacharya, D., Sreekumar, P., Mukhopadhyay, B. and Tomar, I, Does black hole spin play a key role in the FSRQ/BL Lac dichotomy? - Research in Astronomy and Astrophysics 16, 54, 2016.
- 19. Mukhopadhyay, B., General relativity and relativistic astrophysics Current Science 109, 2250, 2015; in a special section dedicated to 100 years of general relativity; arXiv:1609.01862.
- 20. Nath, S. K., and **Mukhopadhyay**, **B.**, Origin of nonlinearity and plausible turbulence by hydromagnetic transient growth in accretion disks: faster growth rate than magnetorotational instability Physical Review E **92**, 023005, 2015; arXiv:1505.02874.
- 21. **Mukhopadhyay**, **B.** and Chatterjee, K., Hydromagnetics of advective accretion flows around black holes: Removal of angular momentum by large scale magnetic stresses Astrophysical Journal **807**, 43, 2015; arXiv:1505.01281.
- 22. Nath, S. K., Mukhopadhyay, B. and Chattopadhyay, A. K., Magnetohydrodynamic stability of stochastically driven accretion flows Physical Review E 88, 013010, 2013; arXiv:1306.6190.
- 23. Das, U., Mukhopadhyay, B. and Rao, A. R., A possible evolutionary scenario of highly magnetized super-Chandrasekhar white dwarfs: progenitors of peculiar type Ia supernovae -Astrophysical Journal Letters 767, 14, 2013; arXiv:1303.4298.
- 24. **Mukhopadhyay**, **B.**, Can the viscosity in astrophysical black hole accretion disks be close to its string theory bound? Physics Letters B **721**, 151, 2013; arXiv:1204.1766.
- 25. Mukhopadhyay, B. and Chattopadhyay, A. K., Stochastically driven instability in rotating shear flows Journal of Physics A: Mathematical and Theoretical 46, 035501, 2013; arXiv:1211.5135.
- 26. Mukhopadhyay, B., Bhattacharya, D. and Sreekumar, P., Observational evidences for spinning black holes: A proof of general relativity for spacetime around rotating black holes International Journal of Modern Physics D 21, 1250086, 2012; arXiv:1210.2441 an invited paper for a special issue of Gravity Research Foundation, 2012.
- 27. Sinha, A., and **Mukhopadhyay**, **B.**, Implications of a viscosity bound on black hole accretion Physics Letters B **709**, 289, 2012; arXiv:1108.5177.
- 28. Mukhopadhyay, B. and Dutta, P., Variation of the gas and radiation content in the sub-Keplerian accretion disk around black New Astronomy 17, 51, 2012; arXiv:1204.1274.

- 29. Mukhopadhyay, B., Mathew, R. and Raha, S., Growing pseudo-eigenmodes and positive logarithmic norms in rotating shear flows New Journal of Physics 13, 023029, 2011; arXiv:1101.4608.
- 30. Mukhopadhyay, B., and Saha, K., Possible origin of viscosity in the Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic field Research in Astronomy and Astrophysics 11, 163, 2011; arXiv:1101.4613.
- 31. Bhattacharya, D., Ghosh, S. and Mukhopadhyay, B., Disk-outflow coupling: Energetics around spinning black holes Astrophysical Journal 713, 105, 2010; arXiv:0911.3049.
- 32. Rajesh, S. R. and **Mukhopadhyay**, **B.**, Two temperature accretion around rotating black holes: Description of general advective flow paradigm in presence of various cooling processes to explain low to high luminous sources Monthly Notices of Royal Astronomical Society **402**, 961, 2010; arXiv:0910.4502.
- 33. Rajesh, S. R. and **Mukhopadhyay**, **B.**, Two temperature viscous accretion flows around rotating black holes: Description of under-fed systems to ultra-luminous X-ray sources New Astronomy **15**, 283, 2010; arXiv:0908.3956.
- 34. Ghosh, S. and **Mukhopadhyay**, **B.**, Krishan, V. and Khan M., Description of accretion induced outflows from ultra-luminous sources to under-luminous AGNs New Astronomy **15**, 83, 2010; arXiv:0906.0149.
- 35. Sinha, M., Rajesh, S. R. and **Mukhopadhyay**, **B.**, Transition from radiatively inefficient to cooling dominated phase in two temperature accretion discs around black holes Research in Astronomy and Astrophysics **9**, 1331, 2009; arXiv:0910.4818.
- 36. Mukhopadhyay, B., Higher order nonlinearity in accretion disks: QPOs of black hole and neutron star sources and their spin Astrophysical Journal 694, 387, 2009; arXiv:0811.2033.
- 37. Ghosh, S. and Mukhopadhyay, B., 2.5-dimensional solution of the advective accretion disk: A self-similar approach Research in Astronomy and Astrophysics 9, 157, 2009; arXiv:0811.4705.
- 38. Mukhopadhyay, B., Estimate of the Shakura-Sunyaev viscosity parameter in the Keplerian accretion disk from hydrodynamic turbulence International Journal of Modern Physics D 17, 467, 2008 (An invited article for a special issue for Gravity Research Foundation 2007).
- 39. Ghosh S. and Mukhopadhyay, B., Generalized pseudo-Newtonian potential for studying accretion disk dynamics in off-equatorial planes around rotating black holes: Description of a vector potential Astrophysical Journal 667, 367, 2007; arXiv:0706.2221.
- Mukhopadhyay, B., Growing hydrodynamic modes in Keplerian accretion disks during secondary perturbations: Elliptical vortex effects - Astrophysical Journal 653, 503, 2006; astroph/0608402.
- 41. **Mukhopadhyay, B.**, Afshordi, N. and Narayan, R., Bypass to turbulence in hydrodynamic accretion disks: An eigenvalue analysis Astrophysical Journal **629**, 383, 2005; astro-ph/0412193.
- 42. Afshordi, N., **Mukhopadhyay**, **B.** and Narayan, R., Bypass to turbulence in hydrodynamic accretion disks: Lagrangian analysis of energy growth Astrophysical Journal **629**, 373, 2005; astro-ph/0412194.
- Mukhopadhyay, B. and Ghosh, S., Global solution of viscous accretion disk around rotating compact objects: a pseudo-general relativistic study - Mon. Not. Roy. Astron. Soc. 342, 274, 2003; astro-ph/0304157.

- 44. Mukhopadhyay, B., Ray, S., Dey, J. and Dey, M., Origin and interpretation of kilohertz QPOs from strange stars in X-ray binary system: Theoretical hydrodynamical description Astrophysical Journal Letters 584, 83, 2003; astro-ph/0211611.
- 45. Mukhopadhyay, B., Stability of accretion disk around rotating black holes: a pseudo-general-relativistic fluid dynamical study Astrophysical Journal 586, 1268, 2003; astro-ph/0212186.
- Prasanna, A. R. and Mukhopadhyay, B., Effect of Coriolis force on Accretion Flows around Rotating Compact Object - International Journal of Modern Physics D 12, 157, 2003; astroph/0107119.
- 47. Mukhopadhyay, B. and Misra, R., Pseudo-Newtonian potentials to describe the temporal effects on relativistic accretion disk around rotating black holes and neutron stars Astrophysical Journal 582, 347, 2003; astro-ph/0209042.
- 48. **Mukhopadhyay**, **B.**, Description of pseudo-Newtonian potential for the relativistic accretion disk around Kerr black holes Astrophysical Journal **581**, 427, 2002; astro-ph/0205475.
- 49. **Mukhopadhyay**, **B.**, Hydrodynamical Study of Advective Accretion flow around Neutron Stars International Journal of Modern Physics D **11**, 1305, 2002; astro-ph/0203438.
 - Stellar Physics and Gravitation
- 50. Adhikari, P., et al., along with Ayala, A., **Mukhopadhyay, B.**, and 58 others, Strongly interacting matter in extreme magnetic fields Progress in Particle and Nuclear Physics to appear, 2025; arXiv:2412.18632.
- 51. Das, M., Sedrakian, A., and **Mukhopadhyay**, **B.**, Superconductivity in magnetars: Exploring type-I and type-II states in toroidal magnetic fields Physical Review D Letters **111**, L081307, 2025; arXiv:2503.14594.
- 52. Ajith, P., et al., along with **Mukhopadhyay**, **B.** and 15 others, Gravitational physics in the context of Indian astronomy: A vision document Journal of Astrophysics and Astronomy **46**, 6, 2025; arXiv:2501.04333.
- 53. Zuraiq, Z., Mukhopadhyay, B., and Weber, F., Massive neutron stars as mass gap candidates: Exploring equation of state and magnetic field Physical Review D 109 023027, 2024; arXiv:2311.02169.
- Zuraiq, Z., Mukhopadhyay, B., and Weber, F., Exploring Massive Neutron Stars Towards the Mass Gap: Constraining the High Density Nuclear Equation of State - Astronomy Reports 67 (Suppl 2), S199, 2023.
- 55. Das, M., and **Mukhopadhyay**, **B.**, Detection possibility of continuous gravitational waves from rotating magnetized neutron stars Astrophysical Journal **955**, 19, 2023; arXiv:2302.03706.
- 56. Das, M., and Mukhopadhyay, B., Plausible Detection of Rotating Magnetized Neutron Stars by Their Continuous Gravitational Waves Astronomy Reports 67 (Suppl 2), S179, 2023.
- 57. **Mukhopadhyay, B.**, and Bhattacharya, M., Formation, Possible Detection and Consequences of Highly Magnetized Compact Stars Particles **5**, 493, 2022; arXiv:2211.11998.
- 58. Das, A. R., and **Mukhopadhyay**, **B.**, Asymptotically flat vacuum solution for a rotating black hole in a modified gravity theory European Physical Journal C **82**, 939, 2022; arXiv:2203.07690.
- 59. Chakraborty, C., and **Mukhopadhyay**, **B.**, Spin precession in the gravity wave analogue black hole spacetime Universe **8**, 193, 2022; arXiv:2203.11459.

- 60. Bhattacharya, M., Hackett, A. J., Gupta, A., Tout, C. A. and **Mukhopadhyay, B.**, Evolution of highly magnetic white dwarfs by field decay and cooling: theory and simulations Astrophysical Journal **925**, 133, 2022; arXiv:2106.09736.
- 61. Deb, D., **Mukhopadhyay**, **B.** and Weber, F., Anisotropic magnetized white dwarfs: Unifying under- and over-luminous peculiar and standard type Ia supernovae Astrophysical Journal **926**, 66, 2022; arXiv:2112.03938.
- 62. Deb, D., **Mukhopadhyay**, **B.** and Weber, F., Effects of anisotropy on strongly magnetized neutron and strange quark stars in general relativity Astrophysical Journal **922**, 149, 2021; arXiv:2108.12436.
- Kalita, S., Mondal, T., Tout, C. A., Bulik, T. and Mukhopadhyay, B., Resolving dichotomy in compact objects through continuous gravitational waves observation - MNRAS 508, 842, 2021; arXiv:2109.06246.
- Sharma, A., and Mukhopadhyay, B., Modified Newtonian Gravity: Explaining observations
 of sub- and super-Chandrasekhar limiting mass white dwarfs Scientific Voyage 2, 20, 2021;
 arXiv:2105.01702.
- 65. Kalita, S., and Mukhopadhyay, B., Gravitational wave in f(R) gravity: possible signature of sub- and super-Chandrasekhar limiting mass white dwarfs Astrophysical Journal 909, 65, 2021; arXiv:2101.07278.
- 66. Kalita, S., Mukhopadhyay, B., and Govindarajan, T. R., Violation of Chandrasekhar mass-limit in noncommutative geometry: A strong possible explanation for the super-Chandrasekhar limiting mass white dwarfs International Journal of Modern Physics D 30, 2150034, 2021; arXiv:1912.00900.
- 67. Mukhopadhyay, B., Sarkar, A., and Tout, C. A., Modified virial theorem for highly magnetized white dwarfs Monthly Notices of Royal Astronomical Society 500, 763, 2021; arXiv:2010.04177.
- 68. Gupta, A., **Mukhopadhyay**, **B.**, and Tout, C. A., Suppression of luminosity and mass-radius relation of highly magnetized white dwarfs Monthly Notices of Royal Astronomical Society **496**, 894, 2020; arXiv:2006.02449.
- 69. Kalita, S., **Mukhopadhyay**, **B.**, Mondal, T, and Bulik, T., Timescales for detection of super-Chandrasekhar white dwarfs by gravitational wave astronomy Astrophysical Journal **896**, 69, 2020; arXiv:2004.13750.
- 70. Kalita, S., and Mukhopadhyay, B., Asymptotically flat vacuum solution in modified theory of Einsteins gravity European Physical Journal C 79, 877, 2019; arXiv:1910.06564.
- Kalita, S., and Mukhopadhyay, B., Continuous gravitational wave from magnetized white dwarfs and neutron stars: possible missions for LISA, DECIGO, BBO, ET detectors - Monthly Notices of the Royal Astronomical Society 490, 2692, 2019; arXiv:1905.02730.
- 72. Kalita, S., and **Mukhopadhyay, B.**, Modified Einstein's gravity to probe the sub- and super-Chandrasekhar limiting mass white dwarfs: a new perspective to unify under- and over-luminous type Ia supernovae Journal of Cosmology and Astroparticle Physics **09**, 007, 2018; arXiv:1805.12550.
- Bhattacharya, M., Mukhopadhyay, B., and Mukerjee, S., Luminosity and cooling of highly magnetized white dwarfs: Suppression of luminosity by strong magnetic fields - Monthly Notices of the Royal Astronomical Society 477, 2705, 2018; arXiv:1509.00936.
- 74. Mukhopadhyay, B., Rao, A. R., and Bhatia, T. S., AR Sco as a possible seed of highly magnetized white dwarf Monthly Notices of Royal Astronomical Society 472, 3564, 2017; arXiv: 1708.04413.

- 75. **Mukhopadhyay**, **B.**, and Rao, A. R., Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs Journal of Cosmology and Astroparticle Physics **05**, 007, 2016; arXiv:1603.00575.
- 76. Das, U., and **Mukhopadhyay, B.**, Imprint of modified Einstein's gravity on white dwarfs: Unifying type Ia supernovae International Journal of Modern Physics D **24**, 1544026, 2015; in a special issue for the papers appeared for the Gravity Research Foundation essay competition, 2015; arXiv:1506.02779.
- 77. Subramanian, S., and **Mukhopadhyay, B.**, GRMHD formulation of highly super-Chandrasekhar rotating magnetised white dwarfs: Stable configurations of non-spherical white dwarfs Monthly Notices of Royal Astronomical Society **454**, 752, 2015; arXiv:1507.01606.
- 78. Das, U., and **Mukhopadhyay**, **B.**, GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: Stable configurations of non-spherical white dwarfs Journal of Cosmology and Astroparticle Physics **05**, 016, 2015; arXiv:1411.5367.
- 79. Das, U., and **Mukhopadhyay, B.**, Modified Einstein's gravity as a missing link between sub-and super-Chandrasekhar type Ia supernovae Journal of Cosmology and Astroparticle Physics **05**, 045, 2015; arXiv:1411.1515.
- 80. Bhattacharya, M., Dadhich, N., and **Mukhopadhyay, B.**, Study of motion around a static black hole in Einstein and Lovelock gravity Physical Review D **91**, 064063, 2015; arXiv:1412.4013.
- 81. Das, U., and Mukhopadhyay, B., Reply to "Comment on Strongly magnetized cold degenerate electron gas: Mass-radius relation of the magnetized white dwarf" Physical Review D 91, 028302, 2015; arXiv:1406.0948.
- 82. Das, U., and **Mukhopadhyay**, **B.**, Maximum mass of stable magnetized highly super-Chandrasekhar white dwarfs: stable solutions with varying magnetic fields Journal of Cosmology and Astroparticle Physics **06**, 050, 2014; arXiv:1404.7627.
- 83. Das, U., and **Mukhopadhyay**, **B.**, Revisiting some physics issues related to the new mass limit for magnetized white dwarfs Modern Physics Letters A **29**, 1450035, 2014; arXiv:1304.3022.
- 84. Das, U., and Mukhopadhyay, B., New mass limit of white dwarfs International Journal of Modern Physics D 22, 1342004, 2013; in a special issue for the papers appeared for the Gravity Research Foundation essay competition, 2013; arXiv:1305.3987.
- 85. Banerjee, I., and Mukhopadhyay, B., Establishing a relation between mass and spin of stellar mass black holes Physical Review Letters 111, 061101, 2013; arXiv:1307.4075.
- 86. Das, U., and **Mukhopadhyay**, **B.**, New mass limit for white dwarfs: super-Chandrasekhar type Ia supernova as a new standard candle Physical Review Letters **110**, 071102, 2013; arXiv:1301.5965.
- 87. Das, U., and Mukhopadhyay, B., Strongly magnetized cold electron degenerate gas: mass-radius relation of the magnetized white dwarf Physical Review D 86, 042001, 2012; arXiv:1204.1262.
- 88. Das, U., and Mukhopadhyay, B., Violation of Chandrasekhar mass limit: the exciting potential of strongly magnetized white dwarfs International Journal of Modern Physics D 21, 1242001, 2012; in a special issue for the papers appeared for the Gravity Research Foundation essay competition, 2012; arXiv:1205.3160.
- 89. Kundu, A., and **Mukhopadhyay, B.**, Mass of highly magnetized white dwarfs exceeding the Chandrasekhar limit: An analytical view Modern Physics Letters A **27**, 1250084, 2012; arXiv:1204.1463.

- 90. Biswas, R., Chakraborty, S., Saini, T. D., **Mukhopadhyay**, **B.**, Accretion of Chaplygin gas upon black holes: Formation of faster outflowing winds Classical and Quantum Gravity **28**, 035005, 2011; arXiv:1101.4602.
- 91. Mukhopadhyay, B. and Prasanna, A. R., Fluid flow and inertial forces in black hole space times International Journal of Modern Physics A 18, 1091, 2003; gr-qc/0110022.
- 92. Dhara, H. C. and **Mukhopadhyay**, **B.**, Exact String configurations in Worm-Hole background Il Nuovo Cimento B **116**, 937, 2001.
 - Investigation of Spinor and Electromagnetic Fields in Curved Space-time
- 93. Chakraborty, C. and **Mukhopadhyay**, **B.**, Geometric phase in Taub-NUT spacetime, European Physical Journal C **83**, 937, 2023; arXiv:2306.16318.
- 94. Aggarwal, S., Banerjee, S., Ghosh, A. and **Mukhopadhyay, B.**, Non-uniform magnetic field as a booster for quantum speed: faster quantum information processing New Journal of Physics **24**, 085001, 2022; arXiv:2112.04519.
- 95. Kumar, A. and **Mukhopadhyay**, **B.**, Covariant formalism for the Berry connection due to gravity Scientific Voyage **3**, 19, 2022.
- 96. Aggarwal, S., **Mukhopadhyay**, **B.** and Gregori, G., Relativistic Landau quantization in non-uniform magnetic field and its applications to white dwarfs and quantum information SciPost Physics **11**, 093, 2021; arXiv:2110.09543.
- 97. Ghosh, T. and **Mukhopadhyay**, **B.**, Geometric phase for Dirac Hamiltonian under gravitational fields in the non-relativistic regime International Journal of Modern Physics D **30**, 2150090-417, 2021; arXiv:2010.05945.
- 98. **Mukhopadhyay, B.** and Ghosh, K., Separation of the Dirac equation in the 3 + 1 dimensional constant curvature black hole background and its solution Classical and Quantum Gravity **25**, 065006, 2008; arXiv:0801.3879.
- 99. Mukhopadhyay, B. and Dadhich, N., Scalar and Spinor perturbation to the Kerr-NUT space-time Classical and Quantum Gravity 21, 3621, 2004; gr-qc/0301104.
- 100. **Mukhopadhyay, B.**, Dynamics of electromagnetic waves in Kerr geometry Classical and Quantum Gravity **19**, 2307, 2002; gr-qc/0202050.
- 101. Chakrabarti, S. K. and **Mukhopadhyay**, **B.**, Dirac Equation in Kerr Geometry and its Solution Il Nuovo Cimento B **115**, 885, 2000; astro-ph/0007253.
- 102. Chakrabarti, S. K. and **Mukhopadhyay**, **B.**, Scattering of Dirac Waves off Quantum Black Holes Mon. Not. Roy. Astron. Soc. **317**, 979, 2000; astro-ph/0007277.
- 103. **Mukhopadhyay, B.**, Behaviour of spin-half particle around a charged black hole Classical and Quantum Gravity **17**, 2017, 2000; gr-qc/0003061.
- 104. **Mukhopadhyay, B.** and Chakrabarti, S. K., Solution of Dirac equation around a spinning black hole Nuclear Physics B **582**, 627, 2000; gr-qc/0007016.
- 105. Mukhopadhyay, B., Dirac equation in Kerr Geometry Indian Journal of Physics **73B** (6), 855, 1999; gr-qc/9910018.
- 106. **Mukhopadhyay, B.** and Chakrabarti, S. K., Semi-analytical Solution of Dirac equation in Schwarzschild Geometry Classical and Quantum Gravity **16**, 3165, 1999; gr-qc/9907100.

• Astrophysical Data Analysis

- 107. Guria, A. and Mukhopadhyay, B., Uncovering deterministic behavior of black hole IGR J17091-3624: A twin of GRS 1915+105 Astrophysical Journal 980, 77, 2025; arXiv:2411.17810.
- 108. Karinkuzhi, D., Mukhopadhyay, B., Wickramasinghe, D. and Tout, C., Mass-Radius relation for magnetized white dwarfs from SDSS - Monthly Notices of Royal Astronomical Society 529, 4577, 2024; arXiv:2403.13888.
- 109. C. S. Pradeep, N. Sinha and **Mukhopadhyay**, **B.**, Measuring Deviation from Stochasticity in Time-Series Using Autoencoder Based Time-Invariant Representation: Application to Black Hole Data ICASSP **2023 2023**, 1-5, 2003.
- 110. Adegoke, O., **Mukhopadhyay, B.** and Misra, R., Correlating nonlinear time series and spectral properties of IGR J17091-3624: Is it similar to GRS 1915+105? Monthly Notices of Royal Astronomical Society **492**, 4033, 2020; arXiv:2001.01732.
- 111. Bachev, R., Strigachev, A. and Mukhopadhyay, B., Searching for deterministic chaos in Kepler light curve of the Seyfert 1 AGN Zw229-015 Bulgarian Astronomical Journal 29, 74, 2018.
- 112. Adegoke, O., Dhang, P., **Mukhopadhyay, B.**, Ramadevi, M. C., and Bhattacharya, D., Correlating nonlinear properties with spectral states of RXTE data: Possible observational evidences for four different accretion modes around compact objects Monthly Notices of Royal Astronomical Society **476**, 1581, 2018; arXiv:1801.08552.
- 113. Adegoke, O., Rakshit, S. and **Mukhopadhyay**, **B.**, Spectral and Time Series Analyses of the Seyfert 1 AGN: Zw 229.015 Monthly Notices of Royal Astronomical Society **466**, 3951, 2017; arXiv:1612.06817.
- 114. Bachev, R., **Mukhopadhyay**, **B.**, and Strigachev, A., A search for chaos in the optical light curve of a blazar: W2R 1926+42 Astronomy and Astrophysics **576**, A17, 2015; arXiv:1501.01245.
- 115. Karak, B. B., Dutta, J., **Mukhopadhyay**, **B.**, Search for chaos in neutron star systems: Is Cyg X-3 a black hole? Astrophysical Journal **708**, 862, 2010; arXiv:0911.1701.
- 116. Misra, R., Harikrishnan, K. P., **Mukhopadhyay, B.**, Ambika, G., and Kembhavi, A. K., The chaotic behaviour of the black hole system GRS 1915+105 Astrophysical Journal **609**, 313, 2004; astro-ph/0403144.
 - Field Theory in Curved Space-time and Related Particle Physics
- 117. Jha, A., Dutta, M., Pathak, M., Banerjee, S., and **Mukhopadhyay**, **B.**, Probing the quantum speed limit and entanglement in flavor oscillations of neutrino-antineutrino system in curved spacetime Physical Review D (*Accepted for publication*), 2025; arXiv:2504.20236.
- 118. Kalita, S. and **Mukhopadhyay**, **B.**, Massive Neutron Stars and White Dwarfs as Noncommutative Fuzzy Spheres Universe **8**, 388, 2022; arXiv:2207.07667.
- 119. Kalita, S., Govindarajan, T. R. and **Mukhopadhyay**, **B.**, Super-Chandrasekhar limiting mass white dwarfs as emergent phenomena of noncommutative squashed fuzzy spheres International Journal of Modern Physics D **30**, 2150101, 2021; arXiv:2101.06272.
- 120. Mukhopadhyay, B. and Ganguly, S. K., Gravity-Induced Geometric Phases and Entanglement in Spinors and Neutrinos: Gravitational Zeeman Effect Universe 6, 160, 2020; arXiv:1802.10377.

- 121. Dixit, K., Naikoo, J., **Mukhopadhyay**, **B.** and Banerjee, S., Quantum correlations in neutrino oscillations in curved spacetime Physical Review D **100**, 055021, 2019; arXiv:1903.05664.
- 122. Sinha, M. and **Mukhopadhyay, B.**, CPT and lepton number violation in neutrino sector: Modified mass matrix and oscillation due to gravity Physical Review D **77**, 025003, 2008; arXiv:0704.2593.
- 123. Mukhopadhyay, B., Gravity induced neutrino-antineutrino oscillation: CPT and lepton number non-conservation under gravity Classical and Quantum Gravity 24, 1433, 2007; gr-qc/0702062.
- 124. Debnath, U., **Mukhopadhyay**, **B.** and Dadhich, N., Space-time curvature coupling of spinors in early universe: Neutrino asymmetry and a possible source of baryogenesis Modern Physics Letters A **21**, 399, 2006; hep-ph/0510351.
- 125. **Mukhopadhyay, B.**, Neutrino asymmetry around black holes: Neutrinos interact with gravity Modern Physics Letters A **20**, 2145, 2005; astro-ph/0505460.
- 126. Mukhopadhyay, B. and Singh, P., Neutrino-Antineutrino asymmetry around black hole Pramana 62, 775, 2004.
- 127. Singh, P. and Mukhopadhyay, B., Gravitationally induced neutrino asymmetry Modern Physics Letters A 18, 779, 2003.
- 128. Mohanty, S., **Mukhopadhyay**, **B.** and Prasanna, A. R., Experimental tests of curvature couplings of fermions in General Relativity Physical Review D **65**, 122001, 2002; hep-ph/0201172.
 - Nuclear Astrophysics
- 129. Ayala, A. et al., along with **Mukhopadhyay**, **B.**, Strongly interacting matter in extreme magnetic fields Progress in Particle and Nuclear Physics (Accepted for publication), 2025; arXiv:2412.18632.
- 130. Datta, S. R., and **Mukhopadhyay**, **B.**, Nucleosynthesis in advective disc and outflow: possible explanation for overabundances in winds from X-ray binaries MNRAS **486**, 1641, 2019; arXiv:1904.01592.
- 131. Vishal, M. V., and **Mukhopadhyay**, **B.**, Revised density of magnetized nuclear matter at the neutron drip line Physical Review C **89**, 065804, 2014; arXiv:1403.0763.
- 132. **Mukhopadhyay, B.**, Comment on "Lithium synthesis in microquasar accretion" Physical Review Letters **112**, 229001, 2014.
- 133. Banerjee, I., and Mukhopadhyay, B., Nucleosynthesis in the outflows associated with accretion disks of Type II collapsars Astrophysical Journal 778, 8, 2013; arXiv:1309.0954.
- 134. Banerjee, I., and Mukhopadhyay, B., Nucleosynthesis in the accretion disks of Type II collapsars Research in Astronomy and Astrophysics 13, 1063, 2013; arXiv:1305.1755.
- 135. Sinha, M., **Mukhopadhyay**, **B.** and Sedrakian, A., Hypernuclear matter in strong magnetic field Nuclear Physics A **898**, 43, 2013; arXiv:1005.4995.
- 136. Cooper, R., **Mukhopadhyay**, **B.**, Steeghs, D. and Narayan, R., On the production and survival of carbon fuel for superbursts on accreting neutron stars: Implications for mass donor evolution Astrophysical Journal **642**, 443, 2006; astro-ph/0508194.
- 137. **Mukhopadhyay, B.** and Chakrabarti, S. K., Stability of Accretion Disks in Presence of Nuclear Reactions Astrophysical Journal **555**, 816, 2001; astro-ph/0103230.

- 138. Mukhopadhyay, B. and Chakrabarti, S. K., Nucleosynthesis in Accretion Flows around Black Holes Astronomy and Astrophysics 353, 1029, 2000; astro-ph/9912568.
- 139. Chakrabarti, S. K. and **Mukhopadhyay**, **B.**, Neutron Disks Around Black Holes Astronomy and Astrophysics **344**, 105, 1999; astro-ph/9904342.
- 140. Mukhopadhyay, B., Nucleosynthesis around Black Holes Indian Journal of Physics **73B** (6), 917, 1999; astro-ph/9910080.

In Proceedings

- Astrophysical Fluid Dynamics and Accretion Phenomena
- 141. Ghosh, S. and **Mukhopadhyay**, **B.**, Hydrodynamical transport of angular momentum in accretion disks in the presence of nonlinear perturbations due to noise Proceedings of 16th Marcel Grossmann Meeting, Online, 2021; arXiv:2111.08724.
- 142. Mukhopadhyay, B., Model of a Disk-Outflow Coupled System: Disk-Outflow Symbiosis Proceedings of 13th Marcel Grossmann Meeting, Stockholm, 2012, Edited by K. Rosquist, R. T. Jantzen and R. Ruffini. Singapore: World Scientific, p.2395, 2014; arXiv:1302.3443.
- 143. Mukhopadhyay, B., Does black hole spin play a key role in the FSRQ/BL Lac dichotomy? Proceedings of 13th Marcel Grossmann Meeting, Stockholm, 2012, Edited by K. Rosquist, R. T. Jantzen and R. Ruffini. Singapore: World Scientific, p.1019, 2014; arXiv:1302.3442.
- 144. **Mukhopadhyay, B.** and Chattopadhyay, A. K., Stochastically driven instabilities in accretion flows Proceedings of International Conference on Astrophysics & Cosmology, Central Department of Physics, Tribhuvan University, Kirtipur, Nepal, 2012.
- 145. **Mukhopadhyay, B.**, Two temperature accretion flows around rotating black holes and determining the Kerr parameter of sources Proceedings of 12th Marcel Grossmann Meeting, Paris, 2009; arXiv:1101.4626.
- 146. Mukhopadhyay, B., Predicting spin of compact objects from their QPOs: A global QPO model
 Proceedings of Second Kolkata Conference on Observational Evidences for Black Holes in the
 Universe, Kolkata, February 10-15, 2008; AIP Conf. Proc. 1053, 343, 2008; arXiv:0809.3336.
- 147. **Mukhopadhyay, B.**, Transonic properties of the accretion disk around compact objects Proceedings of First Kodai-Trieste Workshop on Plasma Astrophysics in Kodaikanal Observatory, Indian Institute of Astrophysics, Kodaikanal, India, August 27 to September 7, 2007.
- 148. Mukhopadhyay, B., Secondary Perturbation Effects in Keplerian Accretion Disks: Elliptical Instability Proceedings of 11th Marcel Grossmann Meeting, Berlin, 2006; astro-ph/0703201.
- 149. **Mukhopadhyay, B.**, Afshordi, N. and Narayan, R., Growth of hydrodynamic perturbations in accretion disks: Possible route to non-magnetic turbulence Proceedings of COSPAR Colloquium on Spectra and Timing of Compact X-ray Binaries, Tata Institute of Fundamental Research, Mumbai, India, January 17-21, 2005; Advances in Space Research **38**, 2877, 2006; astro-ph/0507046.
- 150. **Mukhopadhyay, B.**, Afshordi, N. and Narayan, R., Hydrodynamic turbulence in accretion disks Proceedings of 22nd Texas Symposium, Stanford, 2004, eConf C041213:1609, 2004; astro-ph/0501468.

- 151. **Mukhopadhyay, B.**, Effect of Coriolis force on accretion flows in LMXB systems Proceedings of American Astronomical Society, HEAD meeting, New Orleans, Louisiana, September 8-11, 2004.
- 152. Mukhopadhyay, B., Stability of accretion disk around rotating black holes Proceedings of 10th Marcel Grossmann Meeting, Rio de Janeiro, 2003; astro-ph/0402178.
- 153. Mukhopadhyay, B., Ray, S., Dey., J. and Dey, M., Theoretical Description of kHz QPOs in accreting LMXB systems Proceedings of 10th Marcel Grossmann Meeting, Rio de Janeiro, 2003; astro-ph/0402179.
- 154. Mukhopadhyay, B., Stability of accretion disk around rotating black holes Proceedings (online electronic) of PARTICLE ACCELERATION IN ASTROPHYSICAL OBJECTS, Cracow, June 24-28, 2003, Eds. M. Ostrowski, M. Sikora, Astronomical Observatory of the Jagiellonian University, Cracow, Poland (http://www.oa.uj.edu.pl/konferencje/proc0.html).
- 155. Prasanna, A. R. and **Mukhopadhyay**, **B.**, Advection Dominated Flows Around a Rotating Compact Object Proceedings of 16th International Conference on General Relativity and Gravitation, Durban, South Africa, 2001.
 - Stellar Physics and Gravitation
- 156. **Mukhopadhyay, B.**, Bhattacharya, M., Hackett, A. J., Kalita, S., Karinkuzhi, D. and Tout, C. A. Highly magnetized white dwarfs: implications and current status Proceedings of 16th Marcel Grossmann Meeting, Online, 2021; arXiv:2110.15374.
- 157. Kalita, S. and **Mukhopadhyay**, **B.**, Asymptotically flat black hole solution in modified gravity Proceedings of 16th Marcel Grossmann Meeting, Online, 2021; arXiv:2111.05873.
- 158. Mukhopadhyay, B., Significantly super-Chandrasekhar limiting mass white dwarfs as progenitors for peculiar over-luminous type Ia supernovae Proceedings of 12th Conference on the Intersections of Particle and Nuclear Physics (CIPANP), 2015.
- 159. **Mukhopadhyay, B.** and Sinha, M., Constraining the central magnetic field of magnetars Proceedings of 13th Marcel Grossmann Meeting, Stockholm, 2012, Edited by K. Rosquist, R. T. Jantzen and R. Ruffini. Singapore: World Scientific, p.2307, 2014; arXiv:1302.3444.
- 160. Das, U. and **Mukhopadhyay**, **B.**, Strongly magnetized cold electron degenerate gas: mass-radius relation of the magnetized white dwarf Proceedings of 13th Marcel Grossmann Meeting, Stockholm, 2012, Edited by K. Rosquist, R. T. Jantzen and R. Ruffini. Singapore: World Scientific, p.2478, 2014; arXiv:1302.5763.
- 161. Das, U., and **Mukhopadhyay, B.**, Strongly Magnetized Electron Degenerate Gas: mass-radius relation of the collapsed star Proceedings of International Conference on Astrophysics & Cosmology, Central Department of Physics, Tribhuvan University, Kirtipur, Nepal, 2012.
 - Black Hole Thermodynamics
- 162. Mukhopadhyay, B. and Ghosh, K., Entropy of spinor fields in 3+1 dimensional constant curvature black hole background Proceedings of 22nd Texas Symposium, Stanford, 2004.

- Investigation of Spinor and Electromagnetic Fields in Curved Space-time
- 163. Mukhopadhyay, B., Ghosh, T. and Ganguly S. K., Gravitational geometric phase Proceedings of 16th Marcel Grossmann Meeting, Online, 2021; arXiv:2111.03277.
- 164. Mukhopadhyay, B. and Dadhich, N., Scalar and spinor perturbation to the most generalised Kerr-NUT space-time - Proceedings of 10th Marcel Grossmann Meeting, Rio de Janeiro, 2003; gr-qc/0401094.
- 165. **Mukhopadhyay**, **B.**, Behaviour of spin-1/2 particle in curved space-time Proceedings of 9th Marcel Grossmann Meeting, Rome, 2000; gr-qc/0103034.
- 166. **Mukhopadhyay, B.** and Chakrabarti, S. K., The Complete Solution of Dirac Equation in Kerr Geometry Proceedings of 'Mini Workshop on Applied Mathematics, Shyllet, Bangladesh, September 1-3, 1998'.
 - Astrophysical Data Analysis
- 167. Mukhopadhyay, B., Chaotic behaviour of micro quasar GRS 1915+105 Proceedings of X-Ray Timing 2003: Rossi and Beyond, ed. P. Kaaret, F. K. Lamb, and J. H. Swank (Melville, NY: American Institute of Physics), November 3-5, 2003, Harvard-Smithsonian Center for Astrophysics, AIP Conf. Proc. 714, 48, 2004; astro-ph/0402222.
 - Field Theory in Curved Space-time and Related Particle Physics
- 168. Kalita, S., Govindarajan, T. R. and **Mukhopadhyay**, **B.**, Natural evidence for fuzzy sphere noncommutative geometry: super-Chandrasekhar white dwarfs Proceedings of 16th Marcel Grossmann Meeting, Online, 2021; arXiv:2111.05878.
- 169. Mukhopadhyay, B., Lorentz Symmetry Violation in Neutrinos in Curved Spacetime and its Consequences Proceedings of 12th Marcel Grossmann Meeting, Paris, 2009; arXiv:1101.4628.
- 170. Mukhopadhyay, B., Possible neutrino-antineutrino oscillation under gravity and its consequences Proceedings of 11th Marcel Grossmann Meeting, Berlin, 2006; gr-qc/0701077.
- 171. **Mukhopadhyay, B.**, Neutrino asymmetry in presence of gravitational interaction Proceedings of 10th Marcel Grossmann Meeting, Rio de Janeiro, 2003; gr-qc/0401095.
 - Nuclear Astrophysics
- 172. Banerjee, I. and **Mukhopadhyay**, **B.**, Nucleosynthesis in the gamma-ray burst accretion disks and associated outflows Proceedings of 13th Marcel Grossmann Meeting, Stockholm, 2012, Edited by K. Rosquist, R. T. Jantzen and R. Ruffini. Singapore: World Scientific, p.1773, 2014; arXiv:1302.3067.
- 173. **Mukhopadhyay, B.**, Nucleosynthesis in accretion disk around compact object Proceedings of 9th Marcel Grossmann Meeting, Rome, 2000; astro-ph/0103162.
- 174. Mukhopadhyay, B., Nucleosynthesis in Advective Accretion Disk around Galactic and Extra-Galactic Black Holes Proceedings of International Workshop 'The Observational Evidences For Black Hole, Calcutta, January 1-17, 1998', Ed. S. K. Chakrabarti, Kluwer Academic Press; astro-ph/9807106.

In Book/Edited Volume

- 1. Mukhopadhyay, B. and Chakraborty, C., Special Issue of Universe on Analogue Gravity; Universe, 15th November, 2024.
- 2. Mukhopadhyay, B., Special Issue of Universe on Accretion Disks, Jets, Gamma-Ray Bursts and Related Gravitational Waves; Universe, 15th November, 2019.
- 3. Mukhopadhyay, B. and Sasmal, S., Exploring the Universe: From Near Space to Extra-Galactic, Springer, 2018.
- 4. **Mukhopadhyay**, **B.** and Singh, T. P., *Special Section* of Current Science dedicated to 100 Years of General relativity; Current Science **109**, 25th December, 2015.

In Popular Magazine/Newspaper/Book-Review

- Mukhopadhyay, B., Review of "Einstein Rediscovered: Interactions with Indian Academics. Rajinder Singh. Shaker Verlag GmbH, Am Lagen Graben 15a, 52353, Düren. 2019" - Current Science, 118, 1998, 2020.
- 2. Das, U. and **Mukhopadhyay**, **B.**, An article "New Mass Limit for White Dwarfs: Explains Super-Chandrasekhar Type Ia Supernovae" in a popular-science magazine *2Physics*, on 24th February, 2013.
- 3. Mukhopadhyay, B., An article "Hole's A Heady Brew" in a newspaper *The Telegraph*, India on 17th January, 2000.
- 4. Mukhopadhyay, B., Nucleosynthesis around a Black Hole Universe and Beyond, 1999.

Papers in math-ph Archive

- 1. Mukhopadhyay, B., Instantaneous Reflection and transmission coefficients and a special method to solve wave equation; math-ph/9908011.
- 2. **Mukhopadhyay, B.**, Raychaudhuri, S., Difference in the number of operators between coupled and uncoupled basis for the general SU(n) Lie algebra; math-ph/9906025.

In Abstract Proceedings

- 1. **Mukhopadhyay, B.**, Pseudo-Newtonian Potential and its Application in Accretion Disk around Rotating Compact Objects 22nd Meeting of the Indian Association for General Relativity and Gravitation, IUCAA, Pune, India, December 11-14, 2002.
- Mukhopadhyay, B., Stability of accretion disk in presence of Nucleosynthesis 16th International Conference on General Relativity and Gravitation, Durban, South Africa, July 15-21, 2001.

- 3. **Mukhopadhyay, B.**, Nucleosynthesis in Accretion Disk around Black Holes Indian Science Congress, 2001.
- 4. Mukhopadhyay, B., Space Dependent Reflection and Transmission Coefficients Indian Science Congress, 2000.
- 5. **Mukhopadhyay, B.**, The Method to Solve the Non-analytic Differential Equation Analytically Indian Science Congress, 1999.
- 6. **Mukhopadhyay, B.** and Chakrabarti, S. K., Solution of Dirac Equation in Kerr Geometry 19th Texas Symposium on Relativistic Astrophysics and Cosmology, held in Paris, France, December 14-18, 1998, Eds.: J. Paul, T. Montmerle, and E. Aubourg (CEA Saclay).
- 7. Mukhopadhyay, B. and Chakrabarti, S. K., Nucleosynthesis in Advective Accretion Disks Around Black Holes 19th Texas Symposium on Relativistic Astrophysics and Cosmology, held in Paris, France, December 14-18, 1998, Eds.: J. Paul, T. Montmerle, and E. Aubourg (CEA Saclay).
- 8. Mukhopadhyay, B. and Raychaudhuri, S., Rules for Difference of Number of Complete and Non-Complete Set of Operators in a Particular Representation Indian Science Congress, 1998.