Effective grain surface area in the formation of molecular hydrogen in interstellar clouds

Sandip K. Chakrabarti1,2, Ankan Das2, K. Acharyya2, S. Chakrabarti2,3

1 S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098, India
e-mail: chakrab@bose.res.in
2 Centre for Space Physics, Chalantika 43, Garia Station Rd., Kolkata, 700084, India
e-mail: ankan@csp.res.in, acharyya@csp.res.in
3 Maharaja Manindra Chandra College, 20 Ramkanta Bose Street, Kolkata 700003, India
e-mail: sonali@csp.res.in

Received ; accepted

ABSTRACT

Aims. In the interstellar clouds, molecular hydrogens are formed from atomic hydrogen on grain surfaces. An atomic hydrogen hops around till it finds another one with which it combines. This necessarily implies that the average recombination time, or equivalently, the effective grain surface area depends on the relative numbers of atomic hydrogen influx rate and the number of sites on the grain. Our aim is to discover this dependency.

Methods. We perform a numerical simulation to study the recombinatıon of hydrogen on grain surfaces in a variety of cloud conditions. We use a square lattice (with a periodic boundary condition) of various sizes on two types of grains, namely, amorphous carbon and olivine.

Results. We find that the steady state results of our simulation match very well with those obtained from a simpler analytical consideration provided the ‘effective’ grain surface area is written as \(S^a \), where, \(S \) is the actual physical grain area and \(a \) is a function of the flux of atomic hydrogen which is determined from our simulation. We carry out the simulation for various astrophysically relevant accretion rates. For high accretion rates, small grains tend to become partly saturated with \(H \) and \(H_2 \) and the subsequent accretion will be partly inhibited. For very low accretion rates, the number of sites to be swept before a molecular hydrogen can form is too large compared to the actual number of sites on the grain, implying that \(a \) is greater than unity.

Key words. ISM: Molecules – Astrochemistry – Methods: numerical

1. Introduction

It is long known that the formation of \(H_2 \) in the interstellar cloud takes place on the grain surfaces and are then released into the gas phase. Considerable studies were made since then to understand the real physical processes which are taking place both theoretically (e.g., Hollenbach, Werner & Salpeter, 1971; Takahashi, Matsuda & Nagaoka, 1999; Biham et al. 2001) and experimentally (e.g., Pirronello et al. 1999). A quantitative estimation based on physisorption of the formation rate of \(H_2 \) was carried out by Biham et al. (2001) and Green et al. (2001). It was found that a significant production is possible in cooler (\(\sim 10 - 25 K \)) clouds (Rae et al. 2003). Cazaux & Tielens (2002, 2004) use both physisorption and chemisorption, to demonstrate that \(H_2 \) production is possible at high temperatures (\(\sim 200 - 400K \)) also. Recently, Acharyya, Chakrabarti & Chakrabarti (2005) and Acharyya & Chakrabarti (2005) computed the formation of \(H_2 \) from \(H \) assuming various cloud conditions and using rate and master equations presented by Biham et al. (2001). If one considers only \(H \) and \(H_2 \), then, in a steady state, the number of hydrogen atoms (\(n_H \)) and molecules (\(n_{H_2} \)) on a grain surface are obtained by equating the effective influx (or, accretion) rate \(\phi_H \) of \(H \) with the rate at which they are used up to form \(H_2 \) and/or get desorbed from the grain surface into the gas phase, i.e.,

\[
\phi_H = W_H n_H + 2 a_H n_H^2, \tag{1a}
\]

and

\[
W_{H_2} n_{H_2} = \mu a_H n_H^2. \tag{1b}
\]

Here, \(\phi_H \) is the effective flux (in units of number/s) of \(H \) on the grain surface, \(W_H \) and \(W_{H_2} \) (both in units of \(s^{-1} \)) are the desorption co-efficients of \(H \) and \(H_2 \) respectively, \(a_H \) (in units of \(s^{-1} \)) is the effective rate of recombination of two \(H \) atoms to form one \(H_2 \) molecule and \(1 - \mu \) is the fraction of \(H_2 \) that are formed on the grain which are spontaneously released to the gas phase. Solving these simple equations, we find in the
steady state, number of H and H_2 on a grain surface to be,

$$n_H = \sqrt{\frac{W_H^2 + 8a_H \phi_H - W_H}{4a_H}}, \quad (2a)$$

$$n_{H2} = \frac{\mu a_H n_H^2}{W_H} \quad (2b)$$

We ignore H_2 formation by tunneling since the experiments indicate hopping to be the major process (see, Acharyya, Chakrabarti, & Chakrabarti, 2005 and references therein), where A_H is the hopping rate (inverse of the diffusion time $T_d = 1/A_H$) on a grain surface and S is the number of sites on the grain surface (Biham et al. 2001). The argument for reducing the diffusion rate by a factor of S is this: on an average, there are $n = S^{1/2}$ number of sites in each direction of the grain. Since the hopping is random, it would take a square of this, namely, $n^2 = S$ number of hopping to reach a distance located at $n = S^{1/2}$ sites away, where, on an average, another H is available. Thus, the effective recombination rate was chosen to be A_H/S. However, when the flux is very high in a small grain, many sites would be full and an H need not hop a distance of $S^{1/2}$ to meet another one. Similarly, when the accretion rate is too low, one H may have to sweep the whole grain several times before it can meet another H to recombine. Thus, it is expected that the effective rate of recombination would be a function of the number of sites as well as the flux of H on the grain. If we assume that the effective number of sites could be written as S^{α_0}, where α_0 is a constant for a given flux and grain, then, in principle, we could define the effective recombination rate to be,

$$a_H = A_H/S^{\alpha_0}, \quad (3a)$$

and we expect that higher the accretion rate, lesser would be the value of α_0. In the opposite limit, when the accretion rate is low, one would get $\alpha_0 > 1$ since the effective site number is higher than S. In order to see this effect we clearly need to actually compute time dependences of H and H_2 by numerical simulation and derive α_0 when a ‘steady state’ is reached. This we do in this paper.

In the next Section, we present the logic based on which the simulation is carried out. In §3, we present our results under various grain conditions and compare our results with the expectation from the steady state (Eqs. 2ab). We show that these two results match only if α_0 is used in the steady state equations. Finally, in Section §4 we draw our conclusions.

2. Numerical Simulation

The simulation is based on several physical processes which might be taking place on the grain surface. We assume each grain to be square in shape having $S = n^2$ number of sites (where, n is the number of sites in each direction). We use the periodic boundary condition. We consider only the mono-layer on the grain surface. Let $A_H = v \exp(-E_1/k_BT)$, the rate at which H hops from a site to the next, where, v is the vibrational frequency,

$$v = \sqrt{\frac{2sE_d}{\pi^2m_H}}s^{-1}.$$

Here, $s \sim 10^{14}$ cm$^{-2}$ is the surface density of sites on a grain, n_H is the mass (in gm) of the H atom and E_d is the binding energy corresponding to physisorption (in meV). We choose the minimum time step to be $1/A_H$, the hopping time and advance the global time by this time step. Let F_H be the accretion rate of H which increases the number of H on a grain by sticking to it. Here, $F_H = A < V > N_H^{-1}$, N_H is the number density (in cm$^{-3}$) of H in the gas phase, $< V >$ (in cm$^{-2}$) is the average thermal velocity of the particle in the gas phase and A is the physical grain surface area (in cm2); when $10^2 \leq N_H \leq 10^7$, and $< V > \sim 10^4$, we have $3 \times 10^{-8} < F_H < 3 \times 10^{-3}$. We note that the rate at which the dropping of H takes place on a grain is a very small number. To handle this, we drop one H after every A_H/F_H number of hops. When F_H is very low, we continued our simulation for a larger time interval till a steady state is reached. Similarly, where F_{H_2} is large enough so that $F_{H_2}/A_H > 1$, we drop several at each time step. In any case, for a given F_H, the effective accretion rate is given by \(\phi_H = F_H(1-f_{eh} - f_{eh2}) \), where f_{eh} and f_{eh2}, are the fractions of the grain which are occupied by H and H_2 respectively. After $1/A_H$ seconds, ϕ_H/A_H number of hydrogen atoms are dropped on the grain. The exact site at which one atom is dropped is obtained by a pair of random numbers (r_x, r_y; $r_x < 1$ and $r_y < 1$) obtained by a random number generator. This pair would place the incoming hydrogen at (i, j)th grid, where, i and j are the nearest integers obtained using the int function: $i = \text{int}(r_x*n + 0.5)$ and $j = \text{int}(r_y*n + 0.5)$. Each atom starts hopping with equal probability in all four directions. This direction is decided by another random number. When, during the hopping process, one atom enters a site which is already occupied by another atom, we assume that a molecule has formed and we increase the number of H_2 by unity and reduce the number of H by two. However, when the atom enters a site occupied by an H_2, another random number is generated to decide which one of the other nearest sites it is going to occupy. Thermal evaporation of H and H_2 from a grain surface are handled in the following way. Let W_H and W_{H2} be the desorption co-efficients of hydrogen and hydrogen molecule given by $v \exp(-E_1/k_BT)$ and $v \exp(-E_2/k_BT)$, where E_1 and E_2 are the activation barrier energy (in meV) for desorption of H and H_2 molecule. Thus one atom is released to the gas phase after every $1/W_H$ seconds and one molecule is being released after every $1/W_{H2}$ seconds. We generate a random number R_t for every H present on the grain and release (at each time step, i.e., $1/A_H$ seconds) only those for which $R_t < W_H/A_H$. A similar procedure is followed for the evaporation of H_2 for which the criterion for evaporation was $R_t < W_{H2}/A_H$. There could also be spontaneous desorption and a factor of $\mu - 1$ of n_{H2} is evaporated to the gas phase. Here too, a random number R_t is generated for each newly formed H_2 present on the grain. Those which satisfy $R_t < 1 - \mu$ are removed to the gas phase.
We continue our simulation for each type of grain and for each accretion rate and temperature for a duration more than 10^6 s or more depending on the accretion rate F_H, till a quasi-steady state is reached. After an initial transient period, n_H and n_{H_2} reach a quasi-steady state with some fluctuations. These numbers can be used to compute the recombination time. The values of the activation barrier energies E_0, E_1 and E_2 are taken from Katz et al. (1999) and are given by, $E_0 = 24.7$ meV, $E_1 = 32.1$ meV and $E_2 = 27.1$ meV for olivine and $E_0 = 44$ meV, $E_1 = 56.7$ meV and $E_2 = 46.7$ meV for amorphous carbon grains. For olivine, $\mu = 0.33$ and for amorphous carbon $\mu = 0.413$ was used.

3. Recombination time scale as a function of grain and gas parameters

Using the results of our simulation, we are now in a position to compute a quantity $\alpha(t)$ defined by,

$$\alpha(t) = \log\left(\frac{2A_H n_H^2}{\phi_H - W_{H_2}}\right)/\log(S).$$

As $t \to \infty$, $\alpha(t) \to \alpha_0$. If there were no effect of the accretion rate and the finite size of the grain, then we would obtain $\alpha(t) = 1$ identically at all the time. However, we find differently. In Figs. 1(a-b) we plot α_0 for amorphous carbon and olivine grains at $T = 20K$ and $T = 10K$ respectively as a function of the accretion rate per site a. The solid, dot-dashed and dashed curves are for 10^4, 9×10^4 and 10^6 sites respectively. For very very low rates, it becomes impossible to carry out the simulations in a computationally finite time. We thus extrapolate...
lated the curves (dotted) for very low \(a_s \) values. We find that as the accretion rate per site goes down, \(a_0 \) deviates from unity significantly. Thus, clearly, for theoretical considerations, the number of \(H \) and \(H_2 \) should be calculated using Eq. (3b) and not Eq. (3a).

In this context, one important parameter \(\beta \) may be defined as the ‘catalytic capacity’ of a grain which measures the efficiency of the formation of \(H_2 \) on a grain surface for a given pair of \(H \) residing on it. Let \(\delta N_{H_2} \) be the number of \(H_2 \) formed in \(\delta t \) time. Since two hydrogen atoms are required to create one \(H_2 \), the average rate of creation of one \(H_2 \) per pair of \(H \) atom would be given by,

\[
< A_{H_1} > = \frac{1}{2n_H} \frac{\delta N_{H_2}}{\delta t}.
\]

We identify the inverse of this rate with the average formation rate given by,

\[
T_f(t) = S_b(t)/A_{H_1}.
\]

This yields \(\beta(t) \) as a function of time as,

\[
\beta = \log(A_{H_1}/< A_{H_1}>) / \log(S).
\]

Here too, we can define \(\beta_0 = \beta(t \to \infty) \). Our goal would be to see if \(\beta_0 \) thus obtained actually varies with grain parameters, accretion rate and temperatures. We anticipated in Acharyya, Chakrabarti and Chakrabarti (2005) that this exponent could be as low as 0.5 or less. Indeed, this is what we see as well. In Figs. 2(a-b) we show \(\beta_0 \) as a function of the accretion rates per site for various grain sites and for (a) amorphous carbon at \(T = 20K \) and (b) olivine at \(T = 10K \) grains respectively. The solid, dotted and dashed curves are for \(10^4 \), \(9 \times 10^4 \) and \(10^6 \) sites respectively as before. We find that \(\beta_0 \) can vary anywhere between 1.5 to 0.5. Most interestingly, as the accretion rate becomes high, the exponent becomes close to 0.5, as if the recombination is taking place on a one-dimensional grain! This is perhaps understandable, since as the grain gets filled up, the maximum number of hopping in any direction should not be more than \(n \), i.e., the number of sites in any one direction of the grain.

It is interesting to compare the results of our simulation with those obtained from the analytical considerations with and without our \(a_0 \) factor in the equation mentioned above. In Table 1, we present this comparison. We take an olivine grain of \(10^8 \) sites at 10K and vary the accretion rates. In Column 1, we give the accretion rate per site of the grain. In Column 2 we present the coefficient \(a_0 \) which we derive from our simulation. In Columns 3-5, we present the number of \(H \) as obtained by our simulation and the modified equation (Eq. 3b) and the standard equations (Eq. 3a). Columns 6-8, we present similar results for \(H_2 \). We find that our simulation matches more accurately with the analytical results provided Eq. (3b) is chosen. If standard equation (Eq. 3a) is used, the deviation is very significant.

In Fig. 3, we compare the number of \(H \) and \(H_2 \) on an olivine grain of \(10^8 \) sites kept at 10 K as a function of the accretion rate per site. The dashed curves are drawn using Eqs. 2(a-b), and 3b (using \(a_0 \) from the simulation) while the dark circles are purely from our simulation. Using extrapolated \(a_0 \) (from Fig. 1b) we computed \(n_H \) and \(n_{H_2} \) analytically and see very good agreements with the simulation at lower rates also.

4. Concluding remarks

In this paper, we carried out a numerical simulation to show that the effective grain surface is not really the same as the physical grain surface. The simulations have been carried out for amorphous carbon and olivine grains kept at 20K and 10K respectively for a wide range of accretion rates. In the literature, it is assumed that the recombination time is the grain site number divided by the diffusion rate (Eq. 3a). However, we find that this simplistic assumption is not valid especially when the accretion rate of \(H \) on the grains is very low. In this case, an atomic hydrogen may have to sweep a grain several times before meeting another atom to form a molecule thereby increasing the effective surface area. For very high rates, the grain surfaces could be partially filled with \(H \) and \(H_2 \) and search for another \(H \) need not take \(S \) number of hops. We found that on an average, \(a_0 \), the index which determines effective number of sites, could be \(\geq 1 \) for very low rates. We also find that \(a_0 \) depends on the nature of the grains, the temperature and the grain site numbers. Thus the recombination time is a complex function of these parameters. From the simulation results, we defined another index \(\beta \) which is a measure of the average catalytic ability to form an \(H_2 \). This index is also found to be a strong function of the accretion rate. In fact, for very high rates the index may go down to 0.5 as anticipated in ACC05. A comparison of the recombination efficiency as obtained from our procedure with that obtained from the standard consideration [Eq. 1(a-b)] clearly shows a deviation easily attributable to the site/rate dependence of \(a_0 \) in a realistic case. The considerations based on which we came to our conclusion is so generic that we believe that similar dependence should follow even for other grain surface reactions. This will be discussed elsewhere. We believe that this important behaviour will have to be kept in mind in future studies of chemical evolution in interstellar clouds in presence of grains.

Work of AD has been supported by a DST Project and that of KA is supported by an ISRO Project with Centre for Space Physics.

References

Table 1. Comparison of H and H_2 abundances in various methods

<table>
<thead>
<tr>
<th>Accretion Rate per site $\alpha_0 (S^{-1})$</th>
<th>α_0</th>
<th>H with</th>
<th>Simulation</th>
<th>$\alpha_0 \neq 1$</th>
<th>$\alpha_0 = 1$</th>
<th>Simulation</th>
<th>$\alpha_0 \neq 1$</th>
<th>$\alpha_0 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.79×10^{-3}</td>
<td>0.9807</td>
<td>935.75</td>
<td>903.30</td>
<td>1008.83</td>
<td>1609.74</td>
<td>1581.09</td>
<td>1650.50</td>
<td></td>
</tr>
<tr>
<td>8.58×10^{-3}</td>
<td>0.9857</td>
<td>909.51</td>
<td>884.82</td>
<td>958.35</td>
<td>1442.57</td>
<td>1447.73</td>
<td>1489.45</td>
<td></td>
</tr>
<tr>
<td>5.15×10^{-3}</td>
<td>1.0021</td>
<td>791.82</td>
<td>784.50</td>
<td>775.71</td>
<td>940.92</td>
<td>978.55</td>
<td>975.84</td>
<td></td>
</tr>
<tr>
<td>3.43×10^{-3}</td>
<td>1.0127</td>
<td>694.71</td>
<td>692.13</td>
<td>649.17</td>
<td>658.34</td>
<td>691.38</td>
<td>683.45</td>
<td></td>
</tr>
<tr>
<td>2.58×10^{-3}</td>
<td>1.0191</td>
<td>627.84</td>
<td>626.46</td>
<td>569.76</td>
<td>507.21</td>
<td>533.68</td>
<td>526.46</td>
<td></td>
</tr>
<tr>
<td>1.71×10^{-3}</td>
<td>1.0271</td>
<td>539.40</td>
<td>538.32</td>
<td>471.95</td>
<td>349.42</td>
<td>366.19</td>
<td>361.22</td>
<td></td>
</tr>
<tr>
<td>8.58×10^{-4}</td>
<td>1.0385</td>
<td>408.56</td>
<td>407.07</td>
<td>339.14</td>
<td>180.06</td>
<td>188.55</td>
<td>186.52</td>
<td></td>
</tr>
<tr>
<td>1.72×10^{-4}</td>
<td>1.0586</td>
<td>203.73</td>
<td>202.09</td>
<td>154.06</td>
<td>37.40</td>
<td>38.62</td>
<td>38.49</td>
<td></td>
</tr>
<tr>
<td>1.72×10^{-5}</td>
<td>1.0783</td>
<td>71.38</td>
<td>69.68</td>
<td>48.75</td>
<td>3.72</td>
<td>3.83</td>
<td>3.85</td>
<td></td>
</tr>
<tr>
<td>1.37×10^{-6}</td>
<td>1.1013</td>
<td>21.41</td>
<td>21.10</td>
<td>13.49</td>
<td>0.28</td>
<td>0.280</td>
<td>0.2951</td>
<td></td>
</tr>
<tr>
<td>1.72×10^{-7}</td>
<td>1.1170</td>
<td>7.32</td>
<td>7.20</td>
<td>4.49</td>
<td>0.027</td>
<td>0.0290</td>
<td>0.0327</td>
<td></td>
</tr>
<tr>
<td>1.14×10^{-7}</td>
<td>1.1211</td>
<td>5.89</td>
<td>5.76</td>
<td>3.59</td>
<td>0.018</td>
<td>0.018</td>
<td>0.0209</td>
<td></td>
</tr>
<tr>
<td>3.43×10^{-8}</td>
<td>1.1329</td>
<td>2.85</td>
<td>2.78</td>
<td>1.79</td>
<td>0.0038</td>
<td>0.0037</td>
<td>0.0052</td>
<td></td>
</tr>
</tbody>
</table>