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ABSTRACT
We find a self-consistent solution for the outflow rate from an accretion disc around a black
hole. The centrifugal pressure dominated shock in a transonic accretion flow can act as a
Compton cloud by emitting radiation in the form of hard X-rays. It is also the base of an
outflow where considerable matter is ejected. We modify the Rankine–Hugoniot relationship
in the accretion flow when the post-shock region suffers energy as well mass-loss. After
connecting the post-shock solution in the disc with the sonic surface properties of the outflow,
we obtain the ratio of the outflow rate and inflow rate Rṁ analytically. Our conclusions are (i)
the outflow rate is at the most a few per cent of the inflow rate, (ii) the outflow is absent when
the shock is relatively weak (more precisely, the compression ratio is less than about 2) and
(iii) the outflow rate decreases with the increase of the energy loss at the post-shock region.
Thus spectrally soft states will have lesser outflows.
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1 IN T RO D U C T I O N

Jets and outflows are the important components of black hole astro-
physics. Indeed, even before black holes were discovered or even
thought about, the powerful jets in the active galaxy M87 was dis-
covered (Curtis 1918). Ever since the discovery of active galaxies
and quasars in the 1960s and 1970s, powerful jets often were the
only circumstantial evidences that a black hole may be residing at
the galactic centre. In the case of stellar mass black hole candidates
such as GRO J1655−40, GRS 1915+105, etc. where the mass is
typically ∼10−9 times the mass of M87 (and hence these may be
called nanoquasars), powerful jets are also observed which often
move with almost the velocity of light.

Even after four decades of work on the origin, acceleration and
collimation of jets, the jets and outflows are still not well under-
stood. The magnetic field is ubiquitous, and intuitively it should
play a major role in (i) transporting matter out of the disc, (ii)
deciding the outflow velocity at the Alfvèn point and the Alfvèn
speed is decided by the magnetic field strength. Furthermore, the
inner disc being rotationally dominated, the field is expected to be
mainly toroidal and thus when the toroidal field is buoyantly ejected
out of the disc, the so-called ‘hoop stress’ would be of great assis-
tance in collimating the flow. Thus, magnetic field should play a
role in origin, acceleration and collimation of the outflows and jets.
Blandford & Rees (1974), Blandford & Znajek (1977), Blandford
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& Payne (1982) and Camenzind (1990) among others have worked
on the formation and collimation of jets by hydrodynamic and hy-
dromagnetic processes. In these models, the power of the jet may
directly come from the spin energy of the black hole or are driven by
thermal, centrifugal or magnetic effects. On the other hand, in the
transonic flow regime, the outflows are also solutions of the same
equations [e.g. the approach of the solar wind solution of Parker
(1958) is similar to the accretion solution of Bondi (1952)]. Here,
the jets can use the thermal, magnetic or rotational energy at the
base of the jet. Thus they may reach to infinity to achieve asymp-
totically a speed similar to either the hydrodynamic sound speed, or
the Alfvèn speed, or the rotational speed that is present at the base,
respectively. In the well-known Balbus–Hawley instability models,
the magnetic turbulences are shown to increase the inflow rates and
produce magnetized jets spontaneously (Krolik & Hawley 2007,
and references therein).

Recently, it has been found that there is no evidence that the jets
are powered by black hole spin (Fender, Gallo & Russell 2010), at
least in the case of X-ray binaries and the authors speculate that
this conclusion remains valid even for active galaxies and quasars.
They conclude that there must be another parameter in the system
which might be important for powering the jets. This convinc-
ing result immediately challenged the magnetized outflow models
which depended on the spin energy. One other important parame-
ter which might influence the outflows was discussed about more
than a decade ago. It is the strength of the centrifugal pressure
supported shock wave that is present in the flow for much of the
parameter space. Chakrabarti (1985, 1986) postulated that just as
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every outflow is formed from a boundary layer, the jets in the black
hole systems should also be formed out of the CENtrifugal pressure
dominated BOundary Layer or CENBOL which is nothing but the
subsonic region between the inner critical point and the centrifu-
gal force supported shock front in an accretion flow (Chakrabarti
1989, hereafter C89; Molteni, Langafame & Chakrabarti 1994).
Only difference is that in the case of a star, the thickness of the
boundary layer is very small compared to the radius of the star, but
the width of the CENBOL could be typically the 10–20 times the
size of the black hole. Incidentally, this region, in the absence of the
radial velocities is known as the thick accretion disc. The physics
behind its formation is roughly this: the centrifugal force grows as
λ2/r3 while the gravitational force grows as 1/r2 (λ and r being
the specific angular momentum and radius of the flow). As a result,
for a given specific angular momentum, the centrifugal force may
become dominant and slow down the matter by forming a shock.
This very stable region is created due to piling up of matter behind
the centrifugal barrier. In the post-shock region, the flow becomes
hot. Chakrabarti & Titarchuk (1995) showed that this region also
behaves as the Compton cloud which processes soft (low-energy)
photons and emits hard (high-energy) photons. Chakrabarti (1998,
1999) subsequently proposed that the entire outflow is produced by
the CENBOL and outflow rate directly depends on the compression
ratio R = �+/�− of the shock itself, where � is the integrated
density of the flow in the pre-shock (marked with subscript ‘−’)
and post-shock (marked with subscript ‘+’) region. This work was
subsequently extended by adding angular momentum (Das et al.
2001) to this flow and a similar conclusion was reached. In partic-
ular, it was shown that when the shock is very weak (R ∼ 1) or
very strong (R ∼ 4–7), the ratio of the outflow rate to the inflow
rate Rṁ is lower, but when the shock strength is intermediate (say
∼2–3) Rṁ is very high and could be ∼0.2 or more. Two effects are
major in determining the outflow rates: (i) the area of the CENBOL
which increases with the shock location and (ii) the temperature of
the CENBOL which decreases with the shock location. Since these
two effects are opposite to each other, the effect is maximum when
the CENBOL is of intermediate size. Fukumura & Kazanas (2007)
extended the work of Das & Chakrabarti (2001). However, they
included explicitly the loss of specific angular momentum as well.
Since we are considering axisymmetric system, the loss of angular
momentum is implicitly taken care of along with the mass-loss,
and we do not consider such a loss separately. In any case, it was
also established that the shock driven outflow is significant. Becker,
Das & Le (2008) while concluding that the shocks are essential for
driving outflows, showed that dissipative flows are perhaps more
efficient in this regard. One of the examples that the base of the jet
is really at most a few tens of Schwarzschild radii came from radio
observation of M87 (Junor, Biretta & Livio 1999). It appears that the
entire base is no more than ∼50 Schwarzschild radii, in agreement
with the jet–disc connection hypothesis via a shock wave.

Since the hard radiation as well as jets and outflows are produced
at the CENBOL itself, one would wonder whether the CENBOL
itself would survive the loss of energy or it will collapse. Recently,
Das, Chakrabarti & Mondal (2010) addressed this issue in great
detail and they came to the conclusion that the parameter space
of the flow which forms CENBOL shrinks in presence of dissipa-
tion. However, the region still remains sufficiently significant. They
also found that for a given initial set of flow parameters, there is
an upper limit of energy dissipation beyond which shock solution
is not possible. This conclusion is very important, since accord-
ing to Chakrabarti & Titarchuk (1995) also, the emission of hard
photons stops when the accretion rate of the Keplerian disc (i.e.

intensity of soft photons injected into the CENBOL) is increased.
Thus, enhanced cooling, that is, dissipation in CENBOL, removes
the CENBOL altogether. This purely theoretical exercise directly
points to the fact that there should be a strong correlation between
the spectral states and outflows. Simply put, in a soft state, the shock
would be weak or absent and so is the outflow. In a hard state, the
shock would be very strong but the outflow will be continuous, but
not necessarily profuse. In an intermediate state, the shock strength
would be intermediate, and but the outflow is profuse and take part
in Comptonization process. As a result, the outflow may be blobby.
These aspects of jet–disc connection and their ramifications are al-
ready in the literature (Chakrabarti 1999, hereafter C99; Chakrabarti
& Nandi 2000) at least a decade ago.

In this paper, we follow the methodology of C99, Das et al. (2001,
2010) to compute the outflow rates in presence of energy as well as
mass dissipations. Our goal is to have the most realistic hydrody-
namical model with the outflow rate is self-consistently computed
from the inflow rate where dissipation would be put in. In future,
these solutions would be used to compute the spectral properties of
the flow. In the next section, we will present the governing equations
which we plan to solve. We consider three models of dissipation
of the flow at the shock. We obtain the modified form of Rankine–
Hugoniot relation in presence of energy dissipation and mass-loss
from the post-shock region. In Section 3, we will present and discuss
the results. In Section 4, we will present the concluding remarks.

2 G OV E R N I N G E QUAT I O N S A N D SH O C K
C O N D I T I O N S

We consider axisymmetric matter accreting on the equatorial plane
of a Schwarzschild black hole. The geometry of our system is
shown in Fig. 1. The centrifugal pressure forces the matter to have
a standing shock at a distance governed by the Rankine–Hugoniot
condition. At the CENBOL, the flow may lose �E energy per unit
gram and ṀJ gram of matter per second.

Space–time around the black hole is described by the Paczyński–
Wiita pseudo-Newtonian potential φ = GMBH

r−2GMBH/c2 (Paczyński &
Wiita 1980), where MBH is the mass of the black hole and G, c
are the gravitational constant and velocity of light, respectively.
Here, r is the radial distance from the origin of the coordinate in
which the black hole is placed at the centre. We use the geometric
units in which the length, time and velocity scales are measured
in units of 2GMBH/c2, 2GMBH/c3 and c, respectively. In future,
we use r to denote non-dimensional distance, ϑ and a to denote
the non-dimensional radial velocity and adiabatic speed of sound,
respectively. In accretion or outflow, we assume that the viscous
stress is negligible so that matter moves with a constant specific
angular momentum. In this case, the radial momentum equation for a
non-dissipative flow in vertical equilibrium is given by (Chakrabarti
1989)

ϑ
dϑ

dr
+ 1

ρ

dP

dr
− λ2

r3
+ 1

2(r − 1)2
= 0. (1)

Integrating this, we obtain the conserved specific energy of the flow,

E = 1

2
ϑ2 + na2 + λ2

2r2
− 1

2(r − 1)
, (2a)

where n is the polytropic index of the inflow and λ is the spe-
cific angular momentum. In equation (1), P and ρ are the thermal
pressure and the density, respectively, ϑ is the infall velocity and
a = √

(γP/ρ) is the adiabatic sound speed. The mass conservation
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Figure 1. A cartoon diagram of the system under consideration. The axisymmetric accretion flow with specific energy E− forms a centrifugal pressure
supported boundary layer or CENBOL where the Rankine–Hugoniot condition is satisfied. At the CENBOL, the flow loses an energy of �E per unit gram and
ṀJ matter in the outflow.

equation is given by

Ṁ = 
irh(r)ρ. (2b)

Here 
i is solid angle subtended by the inflow. It is useful to rewrite
this equation in terms of ϑ and a in the following way:

Ṁ = ϑaqf (r), (3)

where q = (γ + 1)/(γ − 1). The functional form f (r) = r3/2(r −
1) is obtained by assuming the vertical equilibrium. Here, Ṁ is
the entropy accretion rate (C89) which is conserved (as Ṁ) when
is flow is ideal. However, in presence of shocks, where entropy is
generated, Ṁ will change.

2.1 Shock conditions in presence of energy loss and outflow

As the flow moves closer to the black hole, and the centrifugal force
grows, at some point, the supersonic flow may become subsonic at
the shock front (C89; Nobuta & Hanawa 1994). It becomes super-
sonic again after passing through the inner critical point (C89). The
cooling of electrons takes place in the post-shock region through
inverse Comptonization and is likely to be very important within
a distance dr inside the shock where the optical depth is around
unity. For simplicity, we assume that the entire energy dissipation
takes place right at the shock itself. Thus, instead of the energy
conservation condition at the shock, namely

E+ = E−,

we employ

E+ = E− − �E (4a)

to allow a loss of energy per gram by �E at the post-shock region.
Similarly, instead of using the baryon number conservation,

Ṁ+ = Ṁ−,

we will use

Ṁ+ = Ṁ−(1 − Rṁ). (4b)

The pressure balance condition, where the sum of thermal pressure
and ram pressure must match on the both sides of the shock (Landau
& Lifshitz 1959), remains the same as in a non-dissipative flow, i.e.

W+ + �+ϑ2
+ = W− + �−ϑ2

−. (4c)

(We used subscripts ‘−’ and ‘+’ to refer, respectively, to quantities
before and after the shock.) Here �E and Rṁ refer to energy loss
and ratio of the outflow rate and the inflow rate, respectively. W

and � denote the pressure and the density, integrated in the vertical
direction (see e.g. Matsumoto et al. 1984).

For the sake of concreteness, we can model �E in three different
ways.

(A) Since the dissipation is expected to be mostly through ther-
mal Comptonization (Chakrabarti & Titarchuk 1995), it is assumed
that the energy dissipation in the post-shock region reduces the
temperature of the flow and the loss of energy is proportional to the
temperature difference between the post-shock and the pre-shock
flows, i.e.

�E = f n
(
a2

+ − a2
−
)

(Das et al. 2010), where f is the fraction of thermal energy difference
that is lost, and n is the polytropic constant.

(B) In case when bremsstrahlung is more important than the
thermal Comptonization, the loss of energy would be average of the
energies in the pre- and post-shock flows. We then obtain

�E = f n

(
a2

+ + a2
−
)

2
.

(C) In case the thermal energy of the pre-shock region is much
smaller as compared to that of post-shock region, both of the above
models reduce to

�E = f na2
+.

When inverse Comptonization cools the electrons, it is the post-
shock region that gets cooled. So in that respect model (C) is perhaps
more realistic than model (A). However, model (C) allows the post-
shock region to be cooler than the pre-shock flow by strong cooling
effects, while in model (A) the post-shock region cannot be cooler
than the pre-shock region.

We assume that the flow is in vertical equilibrium and thus use
the sonic point analysis same as in C89. The radial velocity and the
sound speed at the critical point is obtained from

ϑ2
c (rc) = 2

γ + 1
a2

c (rc), (5a)

a2
c (rc) = (γ + 1)(rc − 1)

r2
c

(
λ2

k − λ2
)

(5rc − 3)
, (5b)

where

λk = r3
c

2(rc − 1)2
,

is the Keplerian angular momentum per unit mass. The subscript ‘c’
denotes quantities at the critical point. In the vertical equilibrium

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 2414–2421



Outflows from dissipative accretion shocks 2417

model the Mach number ϑ c/ac at the critical point is given by

Mc =
√

γ + 1

2

ϑc

ac
.

For studying the shock solutions in terms of the flow parameters, we
write the equations (4a), (3) and (4c) in terms of the Mach number
M = ϑ/a of the flow,

1

2
M2

+a2
+ + a2

+
γ − 1

+ �E = 1

2
M2

−a2
− + a2

−
γ − 1

, (6a)

Ṁ+ = M+aν
+f (rs), (6b)

Ṁ− = M−aν
−f (rs), (6c)

aν+1
+ Ṁ+
Ṁ+

[
2γ

3γ − 1
+ γM2

+

]
= aν+1

− Ṁ−
Ṁ−

[
2γ

3γ − 1
+ γM2

−

]
,

(6d)

where ν = (3γ − 1)/(γ − 1) and rs is the location of the shock.
Using equations (6a)–(6d) one obtains the following equation re-

lating the Mach numbers of the flow at the shock:

C =
[

2
M+ + M+

(
2n+3

n

)]2
[1 − Rṁ]2

[
M2+

2 + n
] =

[
2

M− + M−
(

2n+3
n

)]2

[
M2−

2 + n − �E
a2−

] .

(7)

In our case, a sub-Keplerian flow with a positive energy will pass
through the outer critical point and if the relation in equation (7) is
satisfied, a standing shock may form.

In case there is no energy loss or mass-loss during the shock
transition, then equation (7) reduces to

C =
[

2
M+ + M+

(
2n+3

n

)]2

[
M2+

2 + n
] =

[
2

M− + M−
(

2n+3
n

)]2

[
M2−

2 + n
] ,

which is a familiar expression for a non-dissipative flow with no
mass-loss (C89).

On further analysis, M+ can be found by using the following
expression:

AM4
+ + BM2

+ + CM+ = 0,

where

A = 2(γ − 1)(3γ − 1)2(1 − Rṁ)2 − C(γ − 1),

B = 8(γ − 1)(3γ − 1)(1 − Rṁ)2 − 2C,

C = 8(γ − 1)(1 − Rṁ)2.

M− can be evaluated using this relation after using equations (3)
and (6a):

M2
− =

(
Ṁ+
Ṁ−

M−
M+

)1/4 [
2 + (γ − 1)M2

+
] − 2

(γ − 1)
+ 2�E

a2−
.

2.2 Outflow rate from inflow rate

In the pre-shock region, the matter is cooler. Assuming E ∼ 0
(freely falling condition) and a ∼ 0 (cool gas) in presence of angular
momentum, matter will fall with a velocity

ϑ(r) =
[

1

r − 1
− λ2

r2

]1/2

. (8)

At the shock r = rs, i.e. the boundary of the CENBOL, the compres-
sion ratio can be computed from the mass conservation equation and
is given by

R = �+
�−

= h+(rs)ρ+(rs)

h−(rs)ρ−(rs)
= ϑ−

ϑ+
. (9)

To have an analytical expression of the outflow in terms of the
known flow parameters, namely the specific energy, the angular
momentum and the energy dissipation factor f , we need to make a
few approximations.

First, we assume that in the pre-shock region, the thermal pressure
is small in comparison to the ram pressure. Thus using equation (4c),
we get

W+(rs) = R − 1

R
�−(rs)ϑ

2
−(rs). (10)

The isothermal sound speed Cs in the post-shock region is obtained
from

C2
s = W+

�+
= R − 1

R2
ϑ2

− = 1

f0

[
r2
s − λ2(rs − 1)

r2
s (rs − 1)

]
, (11)

where f 0 = R2/(R − 1). At the CENBOL, the adiabatic sound speed
is a2

s = γ C2
s . Matter is thermally driven from the CENBOL towards

the axis in the form of jet. One can assume that in between the
CENBOL and the critical point zc of the outflow the matter remains
isothermal (C99) since the matter is practically in a heat bath, being
surrounded by CENBOL. In an adiabatic flow with an equation of
state P = Kργ (where K is a constant and a measure of entropy), one
obtains the ratio of the density at the critical point and the density
at the CENBOL as

ρc

ρs

=
[

a2
c

a2
s

]n

. (12)

The outflow rate is given by

Ṁo = 
oρcϑcz
2
c , (13)

where 
o is the solid angle subtended by the outflow. From these
relations and assuming zc − 1 ∼ zc, and following the steps as in
C99 and Das et al. (2001), one obtains the ratio of the outflow to
the inflow rate as

Rṁ = 
o


i

[
2n+1

2n

(
1

5zc
− 2λ2

5z2
c

)](2n+1)/2

[
(n+1)(R−1)

nR2

(
1

rs−1 − λ2

r2
s

)]n

× R

√
2n

2n + 1

[
1

rs − 1
− λ2

r2
s

]−1/2 (
zc

rs

)2

.
(14)

Here, 
o and 
i are the solid angles subtended by the outflow and
inflow, respectively. We have used n = 3 for a relativistic flow.

In C99, where the CENBOL was assumed to be spherical and
angular momentum and dissipation of energy were assumed to be
negligible, the ratio Rṁ was a function of geometry of the inflow and
outflow as the compression ratio R. However, in this case, neither
the injected energy nor the injected matter remains in the disc. As a
result, the expression for Rṁ is complex (equation 14).

Our interest will be to obtain Rṁ self-consistently. The steps
involved include (i) choice of the model of dissipation (Models A,
B or C), (ii) choice of the fraction f of the injected energy and the
(iii) injected energy and angular momentum themselves. After this
we follow the procedure of C89 to obtain first a non-dissipative
solution. Using that as our first guess, we iterate to obtain the shock
location, shock strength, outflow rate, etc. through convergence of
the code. Our results are presented in the next section.
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3 R ESULTS

In order to show the typical shock transitions in three models, we
compute the energy and the entropy accretion rates at the sonic
or critical points. In Figs 2(a)–(c), the specific energy of accre-
tion flow is plotted against entropy accretion rate for a specific
angular momentum of λ = 1.74 and γ = 4/3 for (a) Model (A),
(b) Model (B) and (c) Model (C), respectively. In (a), the dashed
line a1a2 represents the shock transition without any energy loss
and is an ideal shock transition where energy of the accretion flow
across the transition remains the same. In this case, the entropy
accretion rate Ṁ increases after the shock transition. However, in
presence of radiative cooling, it is not necessary that the entropy has
to increase, since radiated entropy could be more compared to the
generated entropy at the shock. As a result, the entropy accretion
rate may go down. a3a4 represents the shock transition in which
there is an energy loss with f = 0.3 and yet, the post-shock en-
tropy accretion rate is greater than pre-shock entropy accretion rate

(i.e. Ṁ+ > Ṁ−). On the other hand, if we start with a different
energy, we get a shock transition a5a6, where the same fractional
energy loss of f = 0.3 occurs. However, in this case, the post-shock
entropy accretion rate is lesser than the pre-shock accretion rate (i.e.
Ṁ+ < Ṁ−).

In Fig. 2(b), we plot the corresponding cases by a′
1a′

2 (f = 0),
a′

3a′
4 (f = 0.07) and a′

5a′
6 (f = 0.07) and in Fig. 2(c), we plot the

corresponding cases by a1a2 (f = 0), a′ ′
3a′ ′

4 (f = 0.06) and a′ ′
5a′ ′

6 (f =
0.06), respectively.

In Figs 3(a)–(c), we plot the variation of Rṁ as a function of
the compression ratio R for different fractions of energy loss. The
flow angular momentum has been kept fixed at λ = 1.82. γ = 4/3
is chosen throughout. In Figs 3(a)–(c), we show results of Models
(A), (B) and (C), respectively. f is marked on the curves. In all
the cases, we note that Rṁ decreases with increase in the fraction
f , be it the difference in post-shock and pre-shock thermal energy
(Model A), the average of the two thermal energies (Model B) or
the thermal energy of the post-shock region itself (Model C). In

(a) (b) (c)

Figure 2. Energy E as a function of entropy accretion rate Ṁ corresponding to different models of energy loss: (a) Model (A); (b) Model (B) and (c) Model
(C). The shock transitions are shown with dashed lines. See the text for details.

(a) (b) (c)

Figure 3. Variation of Rṁ as a function of compression ratio R for different models of energy loss: (a) Model (A): f varies from 0.1 (top curve) to 0.4 (bottom
curve) with an interval of 0.1; (b) Model (B): f varies from 0.035 (top curve) to 0.14 (bottom curve) with an interval of 0.035; (c) Model (C): f varies from
0.03 (top curve) to 0.12 (bottom curve) with an interval of 0.03. The dashed curve in all the cases represents the outflow rates without any energy dissipation.
Note that the outflow rate goes down when the compression ratio increases. Below a certain compression ratio, depending on the energy loss, no self-consistent
solution exists. Also, the higher the fractional loss is, the lower is the outflow rate, as the post-shock flow loses thermal drive.
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(a) (b) (c)

Figure 4. (a–c) Same as in Figs 3(a)–(c), but the variation of Rṁ as a function of shock locations Xs is plotted. In all the cases, we find that the flow with
lowest factional energy dissipation can have shocks closest to the black holes. The dashed curve represents the outflow rates without any energy dissipation.

all the cases, Rṁ decreases as we increase R. This is because, for
higher value of R, the shock moves inward. As a result, though the
CENBOL temperature goes up and the CENBOL surface (i.e. the
cross-sectional area of the base of jet) decreases. Hence the outflow
rate also goes down. Below a certain R, no self-consistent solution
is possible. Unlike the case of non-dissipative solutions of outflow
rates, where Rṁ peaked at an intermediate R (C99), we find here that
the solutions for weaker R is totally missing. This implies that when
the compression ratio is smaller, no CENBOL is capable of losing
energy and mass. This is consistent with the fact that the softer states
which do not have hot Compton clouds, will not have outflows, a
fact corroborated by all the observations (see Fender et al. 2010, and
references therein). Instead of the compression ratio, if we plot Rṁ

as a function of the shock strength M−/M+, we will have a similar
result.

In Figs 4(a)–(c), we show the variation of Rṁ as a function of
shock locations Xs (actually Xs3 in the notation of C89) for different
values f . The flow parameters are the same as in Figs 3(a)–(c). First
of all, it is observed that the outflow rate decreases as the shock
location is going down. This is expected since in this model the

base of the outflow is the CENBOL itself. It is also observed that
for a particular value of Rṁ, the shocks have to be located at a larger
distance if the fractional dissipation is higher. In Models (B) and
(C) results, we note that even when the loss fraction f is reduced,
the shock location is not close to the black hole.

In Figs 5(a)–(c), Rṁ has been plotted as a function of E of the
post-shock flow. It is clear that higher outflow rates are possible
for flows which start with higher specific energy. Lower energy
flows are capable of higher fraction of energy losses but the outflow
rates are lower in these cases. The flow parameters are same as in
Figs 3(a)–(c).

In Figs 6(a)–(c), the relationship between the shock location Xs is
plotted against the compression ratio R. The flow parameters are the
same as in Figs 3(a)–(c). A very important conclusion we draw is
that as the energy loss increases, the shock location shifts towards
the black hole. This is because the energy loss causes the post-
shock region to cool down. Thus the Rankine–Hugoniot condition
can be satisfied only if the shock shifts to higher thermal pressure.
However, beyond a certain amount of energy loss in the CENBOL,
a stable shock cannot exist. Considering the flow parameter to be

(a) (b) (c)

Figure 5. (a–c) Ratio of the outflow and the inflow rates Rṁ as a function of specific energy, E , of the post-shock flow for all the three models of dissipation
as in Figs 3(a)–(c). In all the cases, we find that the flow with the highest CENBOL energy can have the highest outflow rates. The dashed curve represents the
outflow rates without any energy dissipation.
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(a) (b) (c)

Figure 6. (a–c) Shock location Xs as a function of compression ratio R in all the three models as in Figs 3(a)–(c). The dashed curve represents the shock
locations without any energy dissipation.

λ = 1.82 and energy dissipation to be of the form of Model (A),
i.e. �E = f n(a2

+ − a2
−), the maximum allowed value of f for a

standing shock to form is found to be 0.44. Similarly, for Models
(B) and (C), the maximum allowed values of f are obtained as 0.16
and 0.13, respectively.

4 D I S C U S S I O N A N D C O N C L U D I N G R E M A R K S

In C99, it was pointed out that since the transonic accretion flow is
likely to have a centrifugal pressure supported shock wave, espe-
cially in harder states, the outflows may be thermally and centrifu-
gally driven from the post-shock region. Subsequently, Das et al.
(2010) found that the solutions continue to have shock waves even
when the post-shock region has energy loss through various cooling
processes. In this paper, we generalize this work even further and
explore the possibility of formation of outflows in presence of dis-
sipation of energy in the post-shock region. Thus this work is more
complete and more realistic.

There are several differences between the nature of outflow so-
lutions in the absence and presence of dissipation. In the case of
no-dissipation, the outflow rate was possible even for very weak
shocks. The ratio of outflow and inflow rates (Rṁ) was found to be
as high as 0.15–0.2. In the presence of dissipation and energy loss
at the CENBOL, the outflow was no longer possible as the shock
is weaker. Indeed, the self-consistent solution does not yield any
result for a compression ratio below ∼2. Furthermore, the highest
outflow rate, obtained from self-consistently obtained Mach num-
ber relationship is found to be not more than a few per cent. We also
found a new set of solutions: in presence of cooling, in the post-
shock flow, it is found that shock transitions are possible where the
specific entropy be reduced at the shock transitions.

Understanding the origin, acceleration and collimation of out-
flows from an accretion is a long-standing problem. While it was
earlier believed that the entire disc may be taking part to supply the
most powerful radio jets, detailed analysis indicates that a Keple-
rian disc which is itself a bound system (with negative energy) may
not be capable to supply and accelerate matter to a large distance
(Chakrabarti & Bhaskaran 1992). Naturally, flows with positive
Bernoulli’s constant and with high entropy are more suitable in
this regard. Keeping these in mind, it was postulated (C99) that the
post-shock region which loses radiative energy may also be solely

responsible for energetic outflows. The high-resolution imaging of
the powerful jet in M87 does show that the base is not larger than a
few tens of Schwarzschild radii (Junor et al. 1999) thereby lending
a support to such a hypothesis. Furthermore, the results of Fender
and his group (see Fender et al. 2010, and references therein) found
evidences of strong relationship between the spectral states and the
outflows and found no evidences that spin of a black hole is related
to the outflows. They postulated that there must be other parameters
responsible for luminosity of the jets. The solution of centrifugal
force dominated shocks is weakly dependent on the spin of a black
hole and we strongly believe that these shocks are responsible for
the outflows.

We have purposely left out the magnetic fields from our consider-
ation of computing the outflow rates. So far, there is no convincing
proof that magnetic field plays any major role, though from the high
and often superluminal asymptotic velocity it is natural to assume
that the energy must be magnetic in nature. However, we believe that
if present, the field must be dominated by the toroidal component
and could contribute to the collimation of the jet.

There are several works in the literature which computes the
outflow rates using numerical simulations. In Molteni et al. (1994),
it was shown that for a non-dissipative flow, the outflow rate could
be anywhere between 8 and 10 per cent of the inflow. However,
when dissipation is added in the post-shock region, the outflow
rate becomes lower. Our conclusions, which are totally drawn from
analytical work, roughly agree with very complex recent simulation
results using other disc models. Ohsuga et al. (2009) showed that
depending on the disc model, the ratio of outflow to inflow rates
could vary from ∼1 to ∼10 per cent.
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