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ABSTRACT
In the present communication of our series of papers dealing with the accretion flows in the
pseudo-Kerr geometry, we discuss the effects of viscosity on the accretion flow around a
rotating black hole. We find the solution topologies and give special attention to the solutions
containing shocks. We draw the parameter space where standing shocks are possible and
where the shocks could be oscillating and could produce quasi-periodic oscillations (QPOs)
of X-rays observed from black hole candidates. In this model, the extreme locations of the
shocks give the upper limits of the QPO frequencies (νQPO) which could be observed. We show
that both the viscosity of the flow and the spin of the black hole a increase the QPO frequency
while, as expected, the black hole mass reduces the QPO frequencies. Our major conclusion is
that the highest observed frequency gives a strict lower limit of the spin. For instance, a black
hole exhibiting νQPO ∼ 400 and 700 Hz must have the spin parameters of a > 0.25 and >0.75,
respectively, provided viscosity of the flow is small. We discuss the implications of our results
in the light of observations of QPOs from black hole candidates.

Key words: instabilities – accretion, accretion discs – black hole physics – hydrodynamics –
Shock waves.

1 IN T RO D U C T I O N

In the standard theory of thin accretion flows around black holes
(Shakura & Sunyaev 1973, hereafter SS73) viscosity plays a major
role. Viscosity transports angular momentum outwards and allows
matter to sink into the potential well formed by the central compact
object. In this model, the flow angular momentum is assumed to
be Keplerian and this is the standard notion about how matter is
accreted. However, Chakrabarti & Molteni (1995) and Lanzafame,
Molteni & Chakrabarti (1998), through extensive numerical sim-
ulations, showed that the angular momentum distribution depends
on the viscosity parameter. They showed that close to a black hole,
the disc does not have a Keplerian distribution. This is because the
flow must be supersonic on the horizon (Chakrabarti 1990) whereas
a Keplerian disc is always subsonic (SS73). A study based on ob-
served data from XTE J1550−564 also suggests the existence of
the sub-Keplerian flow (Wu & Soria 2002). Smith et al. (2001)
and Smith, Heindl & Swank (2002) also mentioned that effects
of changes in time-scales shorter than the viscous time have been
observed in several black hole candidates, leading them to believe
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that sub-Keplerian flows are certainly playing a role. Since a sub-
Keplerian flow can also produce standing and oscillating shock
waves (Chakrabarti 1990), we need to look for the implications of
these shocks as well.

The existence of shocks in the context of accretion flows has
been extensively studied after Liang & Thompson (1980) showed
that a rotating flow has more than one sonic points just as in a so-
lar wind. Fukue (1987) found an example of a standing shock in
Schwarzschild geometry while Nakayama & Fukue (1989) studied
transonic flow behaviour in the Kerr geometry without emphasizing
on shocks. Chakrabarti (1989) studied the shock properties exten-
sively and classified the parameter space in terms of whether the
shock conditions are satisfied or not, both in accretion and in winds.
The existence of standing shocks in sub-Keplerian inviscid accre-
tion discs has been tested independently by several groups since then
(Nobuta & Hanawa 1994; Yang & Kafatos 1995; Lu & Yuan 1997).
The puzzling feature of having two algebraically derived shock lo-
cations for a given set of flow parameters was resolved by Nakayama
(1992, 1993, 1994, 1995) who showed that one of the shock waves
obtained through algebraic study in which the post-shock flow
is accelerating must be unstable under infinitesimal perturbation.
Time-dependent numerical simulations (which include global and
non-linear perturbations) of Chakrabarti & Molteni (1993) in one
dimension and Molteni, Lanzafame & Chakrabarti (1994) and
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Molteni, Ryu & Chakrabarti (1996b) in two dimensions showed that
the so-called unstable shock of Nakayama (1992, 1993, 1994, 1995)
does not form at all and the other shock remains stable under axisym-
metric perturbations. The theoretical investigation of Chakrabarti
(1989) was later fully generalized in the Kerr geometry (Chakrabarti
1996a). Using non-axisymmetric perturbations, Molteni, Toth &
Kuznetsov (1999), Okuda et al. (2005), Molteni, Gerardi & Teresi
(2006), Gu & Lu (2006), Okuda, Teresi & Molteni (2007) and,
more recently, Nagakura & Yamada (2008, 2009) showed that the
standing axisymmetric shocks are extremely stable, though non-
axisymmetric blobs may anchor them and cause variations in X-ray
emissions.

As shown by Chakrabarti (1989, 1996a), for a large region of the
parameter space, the standing shocks may form in accretion flows.
Chakrabarti (1990) and Chakrabarti (1996b) showed that when the
viscosity is increased beyond a critical value the shocks disappear
altogether. The existence of a critical viscosity parameter was later
verified numerically (Lanzafame et al. 1998). The concept of the
viscosity parameter α is also improved (Chakrabarti & Molteni
1995). It is argued that in a generalized flow with a significant
radial velocity v, the viscous stress should not be equated to −αP

as in SS73, where P is the thermal pressure, but to −α�(P + ρv2)
or its vertically integrated value when a disc of vertical equilibrium
is considered. Here, ρ is the density and a subscript ‘�’ is given to
α to distinguish it from the Shakura–Sunyaev viscosity parameter.
Using α� has the advantage that in a steady flow, the sum of the
thermal pressure and ram pressure, i.e. P + ρv2, is continuous
across discontinuities. This makes the viscous stress wrφ continuous
across axisymmetric discontinuities as well.

Subsequently, it has become evident that the standing shocks
may be very important in explaining the spectral properties of black
hole candidates (Chakrabarti & Titarchuk 1995) as the post-shock
region behaves as a boundary layer of a black hole where accret-
ing matter dissipates its thermal energy and generates the hard
X-rays by inverse Comptonization. The region is also found to
be responsible for the production of relativistic outflows (see Das
& Chakrabarti 1999; Das et al. 2001a,b; Fukumura & Kazanas
2007 and references therein). Furthermore, numerical simulations
indicated that the shocks may be oscillating in the presence of
cooling effects (Molteni, Sponholz & Chakrabarti 1996a) and
the shock oscillation solutions appear to explain intricate prop-
erties of low- and intermediate-frequency quasi-periodic oscillation
(QPOs) (Chakrabarti & Manickam 2000). The power density spec-
trum (PDS) obtained from several numerical simulations of two-
dimensional advective flows (which include cooling processes) also
shows the presence of QPOs near the break frequency. The com-
puted PDS is found to be similar to what is observed in black hole
candidates (Chakrabarti, Acharyya & Molteni 2004). In some of the
stellar mass black holes, e.g. GRO J1655−40 (6.0–6.6 M�), XTE
1550−564 (8.4 M�), 4U 1630−47 (3 M�), high QPO frequencies
of 450, 276, 262 Hz, respectively, have been detected. Indeed, the
same mechanism of resonance oscillations can be used for all the
black holes, from super-massive to stellar mass. The oscillations
mentioned here could be radial, vertical or even azimuthal (Molteni
et al. 1999, 2006; Okuda et al. 2007; Nagakura & Yamada 2008,
2009). It has also been shown that the shocks oscillate when the
Rankine–Hugoniot conditions are not satisfied, especially when the
entropy at the inner sonic point is higher than that at the outer sonic
point (Ryu, Chakrabarti & Molteni 1997). It is to be noted that the
shock oscillations mentioned above are not the signatures of any
instability. These are simply time-dependent, stable solutions of the
problem very much like an oscillating pendulum.

A sticking point in black hole astrophysics has always been the
measurement, or even the estimation, of the spin of the black hole.
Chakrabarti (1996b) pointed out that since the location of the shocks
is closer in a spinning black hole, the QPO frequency should be
higher. Zhang, Cui & Chen (1997), from the observed X-ray proper-
ties of the Galactic superluminal jet sources such as GRO J1655−40
and GRS 1915+105, strongly suggest that each of them contains a
rapidly spinning black hole. Cui, Zhang & Chen (1998) compared
the computed disc precession frequency with that of the observed
QPOs and derived the black hole spin for an assumed mass. Ap-
plying this model to GRO J1655−40, GRS 1915+105, Cyg X-1
and GS 1124−68, they find that the black holes in GRO J1655−40
and GRS 1915+105 spin at a rate close to the maximum limit,
while Cyg X-1 and GS 1124−68 contain only moderately rotating
black holes. McClintock (2008) argues that since the radius of the
innermost stable circular orbit (ISCO) depends only on the mass
and spin of a black hole, the knowledge of the last stable circular
orbit could provide a way to estimate the spin, when the mass of
the black hole is known, though it is uncertain if a disc ever reaches
an ISCO since a boundary condition on the horizon requires that
flow must deviate from a Keplerian disc much before ISCO (C96b).
Such confusion persists as a result, and different groups have given
different spin values. In one approach, it is suggested that the disc-
dominated state of the black hole binaries has a peak temperature
and luminosity that vary together in such a way as to indicate an ap-
proximately constant emitting area, and the disc spectral modelling
can provide an estimate of the spin of the black hole (Done & Davis
2008; for the spin of the XTE J1550−564, see McClintock 2008).
From the fits of the continuum X-ray spectra using the Novikov–
Thorne thin disc model of three transient black hole X-ray binaries
in the thermal state, it is estimated that dimensionless spin parame-
ter of the black holes would be a ∼ 0.7–0.85, a ∼ 0.65–0.8 and a

∼ 0.98–1 for 4U 1543−47, GRO J1655−40 and GRS 1915+105,
respectively (Narayan et al. 2008). These results are different from
the fit of multicolour disc blackbody and with the best relativistic
model which includes full radiative transfer effects. This approach
gives a ∼ 0.1–0.8 for GRS 1915+105 (Matthew et al. 2006). On
the other hand, using inertial-acoustic oscillations Kato & Fukue
(2006) found the spins of GRO J1665−40, XTE J1550−564 and
GRS 1915+105 to be less than 0.45. Similarly, by fitting the shape
of iron line in GX 339−4, Miller et al. (2008) found a ∼ 0.93.
Our approach does not incorporate ISCO and relies on the effects
away from it, though we can only provide a range of spin from the
observed QPOs.

In the present communication of our series of papers, we wish
to study the behaviour of QPOs in a viscous flow around a rotat-
ing black hole and discuss how the spins may be estimated. Ear-
lier, Chakrabarti & Das (2004, hereafter CD-2004 and references
therein) used pseudo-Newtonian potential [−1/(x − 2), where x is
the radial distance from a black hole in units of the Schwarzschild
radius] and ignored the rotational effect of the black hole. Here,
we use the pseudo-Kerr potential �eff introduced earlier and tested
in the previous papers (Chakrabarti & Mondal 2006; Mondal &
Chakrabarti 2006; hereafter referred to as Papers I and II, respec-
tively). From the shocks, we directly derive the QPO frequencies
as a function of the flow and the black hole parameters. In the next
section, we present the governing equations of the flow. Unlike the
case of an inviscid flow where the specific energy and the angular
momentum remain the same at the sonic points, in our present case,
both of them vary and the analysis is more complex. In Section 3,
we present the sonic point analysis and in Section 4, we present the
method of computing the shock locations and from that the QPO
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frequencies. Finally, in Section 5, we discuss the implications of
our results and draw concluding remarks.

2 G OV E R N I N G E QUAT I O N S O F T H E FL OW

We describe a viscous, axisymmetric accretion flow around a rotat-
ing black hole by an effective potential �eff (PK potential). We con-
sider the units of velocity, distance and time to be c, rg = GMBH/c2

and GMBH/c3, respectively, where c is the velocity of light, and G
and MBH are the gravitational constant and mass of the black hole,
respectively. In this unit, distances are x = r/rg. In our model of
the disc which is assumed to be in hydrostatic equilibrium in the
vertical direction (VEM), local disc height is obtained by equating
the pressure gradient force in the VEM with the component of the
gravitational force in that direction. The height H0 of the disc is
obtained as

H0(x) = asx
1
2

γ

[
∂�eff (x, z)

∂z

]− 1
2

z=0

. (2.1)

Here, as is the adiabatic sound speed defined as as = √
γP/ρ.

We assume that in the VEM, the angular momentum changes very
little. As discussed in the Introduction, we shall use the viscosity
prescription of Chakrabarti & Molteni (1995) valid for flows with
significant radial motion. Thus, the viscous stress is

Wxφ = −α�� and � = [W + 
v2]. (2.2)

Here, W and 
 are the vertically integrated pressure and density
of the flow. As mentioned before, this will ensure that the viscous
stress is continuous across the axisymmetric shock wave that we
are studying here.

In the steady state, the dimensionless hydrodynamic equations
that govern the infalling matter are the followings (C96b and
CD2004).

(a) The continuity equation is obtained from the mass flux of the
flow Ṁ = 
xv and is given by

d

dx
[
xv] = 0. (2.3a)

1

v

dv

dx
+ 1

as

das

dx
+ d

dx
log ρ = −H ′

H
, (2.3b)

where H (x) = h(x)x and h(x) is calculated from the relation H 0 =
ash(x), where H0 is the vertical height of the disc.

(b) The Euler equation in terms of the as(=
√

γP/ρ) yields

v
dv

dx
+ 2as

γ

das

dx
+ a2

s

γ

d

dx
log ρ = − d

dx
�eff, (2.4)

where �eff is our usual effective PK potential (Papers I and II).
(c) The entropy generation equation is


vT
ds

dx
= Q+ − Q−. (2.5)

In the present analysis, we ignore cooling effects explicitly, i.e.
Q− = 0 is used. Assuming an equation of state valid for an ideal
gas, equation (2.5) takes the form

Inva2
s

γ

[
2n

as

das

dx
− 1

ρ

dρ

dx

]
= −Q+

ρh
= −H. (2.6)

We calculate H using the MISStress prescription for Q+ according
to which

Q+ = W 2
xφ

η
= W

(1)
xφ W

(2)
xφ

η
= (−α��)

(
x

d�

dx

)
.

In this case, H takes the form

H = A
(
ga2

s + γ v2
) (

x
d�

dx

)
= A


(
x

d�

dx

)
, (2.7)

where g = In+1
In

= 2γ

(3γ−1) , 
 = (ga2
s + γ v2) and A = − α�

γ
. Here,

�(x) is the angular velocity of the accreting matter at the radial
distance x and n(= 1

γ−1 ) is the polytropic index. In and I n+1 come
from the definition of the vertically averaged density and pressure
(Matsumoto et al. 1984).

(d) The azimuthal momentum equation is

dl

dx
= − 1


xv

d

dx

(
x2Wxφ

) = − d

dx

(
xWxφ


v

)
. (2.8a)

Putting Wxφ = −α�� and � = [W + 
v2], the integration of the
above equation yields

l = lin + α�x

γ v

(
ga2

s + γ v2
)
. (2.8b)

l = lin at the inner edge of the disc (x = 0). Here, we use the constant
mass flux as ∼
 xv. It is evident that α� = 0 implies l = lin which
is a conserved quantity for an inviscid flow.

In a general relativistic flow around a black hole, it is not −uφ , but
the ratio −uφ/ut conserved, where uμ are the velocity components.
The specific angular momentum l̃ that is used in our PK potential is
supposed to be conserved for the particle dynamics only (similar to
‘−uφ’ in a general relativistic flow). However, for a flow, we need
to divide by the specific binding energy. Also as seen from a large
distance, the flow would be dragged with an angular momentum ωx2

which remains non-zero even when the matter angular momentum
is zero. Hence, for flow dynamics, we use

l = (l̃ + ωx2)

�eff

∣∣∣∣PK =
(

l + ωx2

�eff

)∣∣∣∣
PK

= (l + s)|PK = j |PK,

where s = ωx2

�eff
and j = (l + s) = �x2 is an ‘effective angular

momentum’ due to the dragging effect of the Kerr black hole.
Finally, the differential form of equation (2.8a) is given by

1

x

dj

dx
= α�

(
1 − ga2

s

γ v2

)
dv

dx
+ 2α�gas

γ v

das

dx
+ α�

γ vx

(
ga2

s + γ v2
)
.

(2.9)

3 A NA LY S I S O F TH E S O N I C PO I N T
C O N D I T I O N S

Since the outer edge of the accretion disc occurs at a very large
distance, the matter starts with an almost zero radial velocity even
though it enters into the black hole with the velocity of light c.
Thus, during accretion, at some point, matter velocity should exactly
match with the sound speed. This point is called a critical point or a
sonic point. When matter crosses a sonic point, it becomes transonic.
For the sake of completeness, we carry out the sonic point analysis
by representing above three equations, namely equations (2.3), (2.4)
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and (2.5), in the matrix form given by⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Aα�

(
γ 2v4 − g2a4

s

)
v3a2

s

[
2

(γ − 1)as
+ 2Aα�g

asv2



]
−1

1

v

1

as
1

v
2as

γ

a2
s

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

dv

dx
das

dx
d

dx
log ρ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−A


[
α�

v2a2
s x


 − 2γ j

va2
s x

2

]

−H ′

H

−�′
eff

⎞
⎟⎟⎟⎟⎟⎠

. (3.1)

The determinant (D) of the square matrix is

D = − 1

asv2

[
2a2

s v

(γ − 1)
−

(
γ + 1

γ − 1

)
v3

−Aα�v


{
(2g − 1) − ga2

s

γ v2

}]
. (3.2)

The numerator (N) of dv

dx
= N

D
can be calculated from the square

matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−A


[
α�

v2a2
s x


 − 2γ j

va2
s x

2

] [
2

(γ − 1)as
+ 2Aα�g

asv2



]
−1

−H ′

H

1

as
1

−�′
eff

2as

γ

a2
s

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.3)

The numerator (N) is the determinant of the square matrix. Some
simplification yields

N = − 1

av2

[
−Aα�

γ x

2 + 2Ajv

x2



+ �′
eff

((
γ + 1

γ − 1

)
v2 + 2Aα�g


)

− 2v2a2
s

(γ − 1)

H ′

H
− 2Aα�ga2

s

γ



H ′

H

]
. (3.4)

Note that in case of pseudo-Newtonian potential, we have

�′
eff = −

(
l2

x3
− 1

2(x − 1)2

)
and H = x

3
2 (x − 1),

i.e.
H ′

H
= 3

2x
+ 1

(x − 1)
= (5x − 3)

2x(x − 1)
,

and therefore by inserting the above values in the numerator (N) the
form of dv

dx
= N

D
becomes identical as obtained in CD2004.

At the sonic points, both the numerator and the denominator must
vanish simultaneously. For D = 0, one can get the expression for
the Mach number M(xc) = v/as at the sonic point and is given by

M2(xc) = −mb −
√

m2
b − 4mamc

2ma

(3.5a)

where

ma = −Aα�γ 2(γ − 1)(2g − 1) − γ (γ + 1), (3.5b)

mb = −2γ − 2Aα�gγ (γ − 1)(g − 1), (3.5c)

mc = Aα�g2(γ − 1). (3.5d)

In the weak viscosity limit, α� → 0 and the Mach number at the
sonic point M(xc) ≈

√
2n

2n+1 which is our usual result. Setting N =
0 at the sonic point, we get a polynomial for the sound speed as the
angular momentum is also a function of the sound speed as and the
velocity v which appears in the numerator (N). Depending on the
initial parameters, namely the specific energy and the specific an-
gular momentum at the inner edge, a flow may have multiple sonic
points. Nature of sonic point depends on the velocity gradients at
the sonic point. Variation of energy E and angular momentum with
the flow at the sonic point distance (Xc) is shown in Figs 1(a)–(b).
The viscosity parameter α� and the Kerr parameter (a) are assumed
to be 0.05 and 0.50, respectively. The curves in Fig. 1(a) are drawn
for the different values of angular momentum at the inner edge (lin).
These are lin = 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0 and 3.1 (from top
to bottom). At a very large distance, all the curves asymptotically
merge to unity which is the rest-mass energy of the flow. For a
very low angular momentum at inner edge, the flow may have one
sonic point solution whereas at a very high low angular momen-
tum, the flow may have one or two sonic points depending on the
energy of the flow. For moderate values of the angular momentum
at the inner edge, a flow may have transonic solution which was the
common feature in the inviscid flow. The minimum and maximum
values of the curves correspond to the extreme locations of the inner
(I) and the outer (O) sonic point. In between, the flow may have
another spiral type middle (Md) sonic point (Abramowicz & Kato
1989). Stable, unstable or oscillating shock may form in between
the middle (Md) and the outer (O) sonic points as well as in between
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Figure 1(a–b) Variation of (a) specific energy and (b) specific angular mo-
mentum of the flow at the sonic point distance (Xc). Curves in (a) are drawn
for the different values of angular momentum at the inner edge which is
constant. These are considered as lin = 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0
and 3.1 (from top to bottom). Curves in (b) are for the energy values
Ei = 1.004, 1.005, 1.006, 1.007 and 1.008 (from top to bottom). The
viscosity parameter is α� = 0.05.
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Figure 2. A comparison of the variation of the specific energy of the flow at
the sonic point Xc when the spin parameter is changed. The spin parameter
a and the lin (from top to bottom) used are 0, (2.6, 3.1, 3.5) (dotted), a =
0.25, (2.5, 2.9, 3.3) (solid), 0.5, (2.3, 2.7, 3.1) (dash–dotted) and a = 0.75,
(2.1, 2.3, 2.7) (dashed), respectively. The viscosity parameter is α� = 0.05.
Note that the range of angular momentum of interest shifts with the spin
parameter.

the inner (I) sonic point and the middle (Md) sonic points, respec-
tively. The locations of the middle (Md) sonic point corresponds
to the extreme shock locations. The issue of shock formation will
be discussed later in details. Kato, Honma & Matsumoto (1988a,b)
discussed pulsational instabilities in shock-free flows. Numerical
simulation of two-dimensional magnetohydrodynamic flows shows
such instabilities and these have been used to explain QPOs (Kato
2004) in certain objects.

In Fig. 1(b), we show the plots of specific angular momentum
versus sonic point locations (Xc). Different curves are drawn for the
energy values Ei = 1.004, 1.005, 1.006, 1.007 and 1.008 (from top
to bottom). The viscosity and Kerr parameters are identical to those
for Fig. 1(a).

In order to show the variation of the critical energies required
to pass through the sonic points, we show in Fig. 2 plots of E
versus (Xc) for various specific angular momentum when the spin
parameters are varied. The spin a and the lin (from top to bottom)
used for the plots are 0, (2.6, 3.1, 3.5) (dotted), 0.25, (2.5, 2.9,
3.3) (solid), 0.5, (2.3, 2.7, 3.1) (dash–dotted) and 0.75, (2.1, 2.3,
2.7) (dashed), respectively. The viscosity parameter is α� = 0.05.
Note that the range of angular momentum of interest shifts with
the spin parameter. We did not plot for higher spin values since our
pseudo-potential is not accurate for a > 0.8 (see Paper I).

For a given set of flow parameters comprising the angular mo-
mentum at the inner edge, the energy or the sonic point locations
together with viscosity (α�) and the Kerr parameter (a), one can nu-
merically solve equation (3.1) to get different solution topologies.
We have presented here variation of such topologies with the vis-
cosity parameter keeping other flow parameters fixed. We call the
solutions ‘accretion-like’ when the corresponding inviscid solution
passes through the outer sonic point and ‘wind-like’ when the cor-
responding inviscid solution passes through the inner sonic point.
Figs 3(a)–(b) show the variation of solution topologies with the vis-
cosity parameter (α�) of (a) the wind converted to accretion (α� =
0.0, 0.1, 0.175, 0.2) and (b) wind (α� = 0.0, 0.03, 0.04, 0.075) for a
moderate value of the Kerr parameter (a = 0.5). The other required
parameters are Xin = 3.5, lin = 2.95 for accretion and Xin = 3.1,
lin = 3.245 for wind. Figs 3(a)–(b) also indicate that there exists a

0 0.5 1 1.5 2
0

1

2

3

M

0.5 1 0.5 1 0.5 1
log(x) log(x) log(x) log(x)

== 0.03 = 0.040.0   = 0.075

l in= 3.245 x in= 3.1,0.5a= ,

Figure 3. (a–b) Variation of the global solution topologies with the viscosity
parameter α� of (a) wind to accretion and (b) wind is shown for a moderate
value of the Kerr parameter (a = 0.5). The other required parameters are the
same as those used in Figs 1(a)–(b).

critical value of the viscosity parameter beyond which no physical
solutions of topologies are possible in accretion or wind flows.

4 ME T H O D O F C A L C U L ATI N G TH E S H O C K
L O C AT I O N S

During the integration along the subsonic branch, it is possible to
calculate all the local variables (i.e. v, as, M , ρ) at the post-shock
region, in terms of the initial flow parameters. We calculate the local
pressure, local specific energy and specific angular momentum at the
shocks using these subsonic local variables. At the shock, the total
pressure (thermal plus ram), the flow energy, the mass accretion rate
and the specific angular momentum are conserved. These conserved
quantities at the shock give the other set of local variables for the
supersonic branch.

This set of local variables on the supersonic branch help us to
get outer sonic point uniquely for an accretion flow when the inner
sonic point and other initial flow parameters are supplied. Thus, the
accretion flow can be connected with both the saddle type sonic
points through a shock for a dissipative system, and this determines
the standing shock location for a given set of initial parameters.

We compute the local flow variables on the supersonic branch in
terms of the subsonic local flow variables in the following way.

Our model accretion flow is in vertical equilibrium and the total
pressure of the accretion flow at any given point is given by

� = W + 
v2.

The above equation combined with the continuity equation gives

a2
s = γ x�

Ṁg
v − γ

g
v2 = κ1κ2v − κ2v

2, (4.1)

where κ1 = x�

Ṁ
and κ2 = γ

g
. From the local flow energy equation,

radial velocity v at shock location in the supersonic branch can be
calculated using the expression for as and is given by

v = −vb +
√

v2
b − 4vavc

2va

, (4.2)

where va = 2nκ2 − 1, vb = −2nκ1κ2 and vc = 2(E − �eff ). Here,
total pressure and flow energy at the shock location are calculated
with the help of the subsonic flow variables. We consider only the
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Figure 4. (a–b) Variation of the parameter space spanned by the energy
(at inner sonic point) and angular momentum (at the inner edge) for the
different viscosity parameter α� = 0.0, 0.05, 0.1. The values of the Kerr
parameter are (a) a = 0.0 and (b) a = 0.5.

‘+’ sign as we are interested in getting the local flow variables in
the supersonic branch. This radial velocity is used to get the sound
speed as in the supersonic branch of the flow. We use supersonic
flow variables (v and as) to get the outer sonic point by numerical
integration, and it completes the accretion flow solution having a
shock. The collection of flow parameters which yield solutions with
shocks belongs to a continuous region of parameter space spanned
by the energy Ei (inner sonic point) and angular momentum lin. The
investigation of these parameter space (Ei − lin) is made for both
the Schwarzschild (the Kerr parameter a = 0.0) and the Kerr space-
time (for a moderate value of the Kerr parameter a = 0.5) and are
shown in Figs 4(a)–(b). Similar investigation of parameter space is
also made for different viscosity parameter (α� = 0.0, 0.05, 0.1).
We observe that the basic features are almost similar; however the
black hole rotation has noticeable effects on the shape and location
of the regions of parameter space (Ei − lin) in which the accretion
shock may form. The different regions of the parameter space shrink
as the viscosity parameter α� increases. The region also moves up
to the higher energy region. In Fig. 5, we show how the parameter
space varies with spin when the viscosity parameter is kept fixed at
α� = 0.05. With the increase in the Kerr parameter, the region shifts
towards higher energy and lower angular momentum. However, the
overall shape remains almost unchanged. Fig. 6 shows an example
of a solution topology of an accretion flow containing a shock at
Xs = 21.44. The other flow parameters are α� = 0.05, lin = 2.8,
Xi = 3.5235, a = 0.5. The derived outer sonic point is at Xout =
355.10. For a sufficiently high viscosity, the Rankine–Hugoniot
conditions for the steady shock is no longer satisfied anywhere in
the flow and the parameter space of interest disappears.

Numerical simulations indicate that the shocks may be oscillating
when the regions close to the steady shock formation region are con-

2 2.5 3 3.5
1.01

1.015

1.02

1.025

1.03

1.035

1.04

a=0.75

0.50

0.25

0.0

=0.05

lin

in

Figure 5. Variation of the parameter space spanned by the energy (at inner
sonic point) and angular momentum (at the inner edge) for the different
spin parameter (marked) when viscosity parameter is kept constant α� =
0.05. As the spin is increased, one requires higher energy but lower angular
momentum to have shocks in the flow.

0.5 1 1.5 2 2.5 3
log(x)

0.5
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2.5

M

a=0.5

OI

Xs

Figure 6. An example of the solution topology which contains a shock at
Xs = 21.44. The flow parameters are α� = 0.05, lin = 2.8, Xin = 3.5235
and a = 0.5. The location of the derived outer sonic point Xout is 355.10.

sidered, especially when there are two saddle-type sonic points (with
the entropy at the inner sonic point higher than that at the outer sonic
point) but the Rankine–Hugoniot conditions are not satisfied any-
where between those two sonic points (Ryu, Chakrabarti & Molteni
1997). In the presence of cooling effects (Molteni et al. 1996a),
the shocks also exhibit oscillations. As mentioned in the Introduc-
tion, non-axisymmetric oscillations are also possible. These time-
dependent solutions may be very important in explaining QPOs for
all the black holes, from stellar mass to super-massive.

We observe that the post-shock variables depend on the flow pa-
rameters in an accretion flow topology. The topology obtained from
the physical parameters of the flow variable helps us to determine
the shock locations and the post-shock variables such as post-shock
velocity, Mach no. and so on. The post-shock velocity profile after
the shock helps us to determine the infall time of matter falling to
the black hole using

tinfall =
∫

dt =
∫

dx

v
,

where v = v(x) is obtained from the flow solution. The final point
of integration is taken to be the inner sonic point as the time taken
from the sonic point to the horizon is negligible.

Since in a resonance oscillation model (Molteni et al. 1996a;
Chakrabarti et al. 2004) the oscillation period T is the infall time,
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the frequency of QPO is given by

νQPO = 1

TQPO
= 1

tinfall
.

Here, time is given in the geometrical unit. To estimate the QPO fre-
quency in hertz, we convert the infall time tinfall to have a dimension
of seconds by multiplying with rg/c. For the sake of concreteness,
we use the mass of the black hole to be 10 M�. For an arbitrary
mass black hole MBH, this is to be multiplied by m10 = MBH

10 M� .
Figs 7(a)–(b) show variations of the angular momentum (lin) at

the inner edge with (a) the extreme shock locations (Xs) and (b) the
extreme QPO frequency for a 10 M� black hole. What this means
is that each point on a curve is drawn for that specific energy which
will produce a shock which is as close to the black hole as possible.
Parameter pairs of (a, α�) are marked on various curves. In Fig. 7(a),
we note that the extreme shocks occur almost at the same locations
when we compare the viscous and non-viscous accretion flows for
fixed Kerr parameter values (here a = 0.0 or 0.50). In fact, it is
closer for inviscid flow. In Fig. 7(b), the oscillation frequencies of
the shocks located at extreme points are calculated from the infall
time. Most interestingly, the QPO frequency has larger values for
the viscous flows although the shock locations (Xs) are closer for
inviscid flows (Fig. 7a). The angular momentum at the shock shifts
to a lower value as one increases viscosity. As a result, the post-
shock velocity increases with the increase of the viscosity parameter.
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Figure 7. (a–b) Variation of the angular momentum (lin) with (a) the ex-
treme (closest to the black hole) shock locations (Xs) and (b) the extreme
(highest) QPO frequency for a 10 M� black hole. Parameter pairs (a, α�)
are marked on various curves. In (b), the oscillation frequency of the ex-
treme shock location (which is the QPO frequency in the present model)
is provided. Comparing the viscous and non-viscous accretion flows for
a = 0.0 or 0.50, it is observed that the extreme shocks occur almost at the
same locations independent of viscosity parameter, though for higher a, the
extreme shock location is closer and thus the highest QPO frequency is
higher. Here m10 = MBH

10 M� .
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Figure 8. Plots of the post-shock velocity of infalling matter versus shock
locations for various pair of parameters (a, α�). The post-shock velocity or
the infall velocity at the shock is much higher in case of high viscous flow
and high spin of the black hole. Higher infall velocity implies a shorter infall
time and thus a QPO of higher frequency.

Also note that QPOs have higher values when the parameter pairs
(a, α�) are (0, 0.05) and (0.5, 0.1). This imply that depending on
the spin parameter there exists certain critical values of viscosity
parameter (α�) for which the oscillation frequency is maximum.
This parameter is solely governed by the spin of the black hole.

In Fig. 8, we show the post-shock velocity of the flow as a func-
tion of the shock location. What we observe is that for extreme
QPO frequencies, the shock location should be the lowest, as ex-
pected. However, after the initial changes at lower viscosity, the
sensitivity on the higher values of the viscosity parameter to the
extreme frequency is not very much. We marked (a, α�) on each
curve as before. The velocity at the post-shock flow is higher for
higher viscosities, and thus the infall time also becomes shorter and
the corresponding QPO frequency becomes higher. In passing, we
may note that in an inviscid flow, though the shock location changes
very much, the velocity at the shock location does not change by
the same proportion.

5 D I S C U S S I O N S A N D C O N C L U S I O N S

The results obtained by our analysis show that the general features of
accretion flow observed in Schwarzschild space-time remain almost
similar for accretion flows in the Kerr space-time too. However, the
black hole rotation has some noticeable effects on the shape and
location of the regions of parameter space (energy versus angular
momentum) where shocks in accretion may form. We observe that
as the Kerr parameter increases the parameter spaces obtained for
feasible variation of the viscosity parameter shifts towards the region
of higher energy and lower angular momentum while their shape
remains almost unchanged.

We found that as the viscous dissipation reduces the angular
momentum of the infalling matter, the post-shock velocity becomes
higher and thus infall time becomes shorter, which in turn produces
high-frequency QPOs. Thus, the viscosity allows the possibility
to have higher QPO frequency. Similarly, the spin of black hole
also enhances QPO frequency and depending on the spin of black
hole, there exists a critical viscosity for which QPO frequency is
extremum. In this work, we ignored the cooling effects which tend
to reduce the shock location, and thus the QPO frequencies should
increase. This will be studied elsewhere.
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What is the implication of our work in constraining, if at all,
the spin of a black hole? From Fig. 7(b), we observe that low-
frequency QPOs can always be fitted with black holes of both
high and low spins, simply because what we are plotting are the
highest possible QPO frequencies. However, a lower limit of a
could be obtained from the highest QPO observed from a system.
For instance, Fig. 7(b) clearly shows that an observed frequency of,
say, 300, 400, 500, 700 Hz would imply a to be larger than 0, 0.25,
0.5 and 0.75, respectively, if the viscosity is low enough. Numerical
simulations to compute viscosity parameter has also shown that α�

is usually 0.01 or less. Thus, our lower limit of a is very robust
and at least it proves that the black hole is definitely spinning!
Furthermore, the pseudo-Kerr potential is more credible for lower
a values anyway (see Papers I and II), and thus such conclusions
are probably correct as far as the lower limits go. Comparing shock
locations in full general relativity and in the pseudo-Kerr treatment,
we already showed that they agree within a few per cent. An error of
5 per cent in the shock location will produce an error of 7.5 per cent
in QPO frequency, and thus a similar error in the Kerr parameter.
The future goal should therefore be to obtain the highest possible
QPO frequency from a given object and put a lower limit on the
spin parameter.
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